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Abstract. Due to the bad channel environment and poor image sampling
equipment, images are often contaminated by noise in the process of collection,
transmission and processing. Speckle noise, which is difficult and complex to
eliminate, is one of the common noise appearing in image processing. Denoising
methods based on Compressed Sensing (CS) technology have been proved as
useful tools in suppressing speckle noise of single-frame images. However,
temporal correlation in multi-frame images has not yet been utilized. Considering
that the traditional denoising methods do not work satisfactorily in speckle noise
reduction, a multi-frame image speckle denoising methods based on compressed
sensing using tensor model is proposed. The first step is to use the third-order
tensor to represent the blocks of image sequences, then the denoising tensor model
is established according to the CS theory and the corresponding optimization
problem is raised. The problem is divided into three parts: the sparse represen-
tation, the tensor dictionary update and the image reconstruction. A Kruskal
tensor-based Orthogonal Matching Pursuit (OMP) and Candecomp/Parafac
(CP) analysis are used to solve these problems and get the denoised image. At
last, simulations are conducted to compare theCSmethod and traditionalmethods.
It is shown that the CS-basedmulti-frame speckle denoisingmethod performswell
in noise variance and can significantly enhance the visual quality of the image.
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1 Introduction

In the course of the collecting and processing of images, it is inevitable that image
signal is polluted by noise. As a result, image denoising has always been a research
focus in the field of image processing. For ultrasound images and radar images, which
are formed from the reflection of the sound wave and electromagnetic wave, shade and
light image particles would be produced when two echoes reflected by the target are
overlapped. That is how speckle noise comes out in images, on account of the echo
interference and disturbance between dispersive wave beams.

In recent years, certain amounts of speckle denoising methods have been proposed,
in which filter denoising is the most widely used. For example, Lee filter [1] and Kuan
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filter [2]. However, the size of filter window is difficult to choose. Although denoising
effect turns out well, large size windows would lose most high frequency information.
Small size windows fail in the ability of denoising, in spite of protecting detail
information preferably. Aiming at solving this contradiction, several anisotropic dif-
fusion have been presented, such as Perona-Malik Anisotropic Diffusion [3] (PMAD),
Nonlinear Complex Diffusion Filter [4] (NCDF) and Speckle Reducing Anisotropic
Diffusion [5] (SRAD). Nevertheless, these methods are likely to mix up image edges
and speckle noises during edge detection.

A number of new speckle denoising methods have been suggested lately, for
instance, Nonlinear Multi-scale Wavelet Diffusion [6] (NMWD) and Speckle Reduc-
tion Bilateral Filter [7] (SRBF). Compressed Sensing-based speckle denoising methods
also perform well in speckle noise reduction of single-frame images. However, tem-
poral correlation in multi-frame images has not yet been utilized.

In this paper, we focus on multi-frame image speckle denoising method based on
Compressed Sensing using tensor model. Firstly, the third-order tensor is used to
represent the blocks of image sequences. Not only is the information in spatial
dimension kept, but also the information in temporal dimension is discovered. In the
process of training the tensor sparse dictionary, temporal redundancy in video signals is
utilized effectively. After the trained tensor sparse dictionary presents the images,
output results will contain more information that is useful and noises will be separated
extremely. The simulation results show that CS-based multi-frame speckle denoising
method outperform traditional ways in terms of image quality and noise variance under
the same conditions.

2 Speckle Denoising Tensor Model

2.1 Preliminaries

A tensor is also known as a multidimensional array, a higher dimensional form of data.
A first-order tensor, as we know, is a vector. Moreover, a second-order tensor is a
matrix. In addition, tensors of order three or higher are called higher-order tensors [8].
Multi-frame image cube is a typical third-order tensor. To distinguish higher order
tensors from matrices, Higher-order tensors (order three or higher) are denoted by black
letters. The nth order tensor is denoted by A 2 R

I1�I2����IN , and the number of all
elements of A is

QN
j¼1 Ij. A third-order tensor is as shown in Fig. 1.

The outer product of two vectors U and V is:

U � V ¼ A ¼
u1v1 u1v2 � � � u1vn
u2v1 u2v2 � � � u2vn
..
. ..

. . .
. ..

.

umv1 umv2 � � � umvn

2
6664

3
7775 ð1Þ

where U ¼ u1; u2; � � � ; umð Þ and V ¼ v1; v2; � � � ; vnð Þ.
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And the Kronecker product of tensors A and B is defined by:

A� B ¼
a11B a12B � � � a1KB
a21B a22B � � � a2KB
..
. ..

. . .
. ..

.

aJ1B aJ2B � � � aJKB

2
6664

3
7775 ð2Þ

where A 2 R
J�K and B 2 R

M�N .
After calculating the outer product, the number of dimensions of new tensor is the

sum of two original tensors. For instance, A 2 RI1�I2����IN and B 2 RJ1�J2����JM , then
A� B 2 RI1�I2����IN�J1�J2����JM . If N one-dimensional vector Ki(i ¼ 1; 2; . . .;N), and the
elements of each vector are I1; I1; . . .; IN , a N-order tensor A can be made up of these N
one-dimensional vector K1 � K2 � � � � � KN ¼ A: The symbol “�” represents the vector
outer product. An N-way tensor is rank one if it can be written as the outer product of N
vectors. The process, in turn, of factorizing a tensor into a sum of component rank-one
tensors is called the rank-one decomposition of A: Proportional coefficients are needed
sometimes, and then rank-one decomposition is defined by:

A ¼ CK1 � K2 � � � � � KN ð3Þ

However, most tensors are not rank-one. The rank of a tensor A; denoted rank (A),
is defined as the smallest number of rank-one tensors that generate A as their sum. For
formula (4), rank (A) equals to the minimum R.

A ¼
XR
i¼1

CiKi1 � Ki2 � � � � � KiN ð4Þ

2.2 Tensor Decomposition and Tensor Recovery

In the course of image processing, image recovery is necessary because images are
often polluted by noises for some reason, even some parts of images are lost on the

Fig. 1. A third-order tensor A 2 R
I�J�K

624 R. Zhou et al.



receiving end. Using the characteristic low rank of images, images can be recovered by
applying the low-rank recovery of matrices. In this way, the low-rank recovery method
is applicable to recover any data that coincide the tensor model.

Kruskal decomposition and Tucker decomposition are two primary modes of tensor
decomposition [9]. At first, Kruskal decomposition of a third-order tensor is introduced
[10]. Consider a third-order tensor X of which the rank is R, i.e.,

X ¼
XR
i¼1

ki � ai � bi � � � � � ci ð5Þ

where A, B, C are rank-one component tensors of three directions, expressed as:

A ¼ a1; a2; . . .; aR½ �
B ¼ b1; b2; . . .; bR½ �
C ¼ c1; c2; . . .; cR½ �

ð6Þ

So the Kruskal decomposition of X is illustrated in Fig. 2.

The Tucker decomposition was first introduced by Tucker in [11] and refined in
subsequent articles by Levin and Tucker. Let X 2 R

X�Y�Z be a three-way tensor and
can be described as:

X ¼ g�1 U �2 V �3 W

¼
XR
r¼1

XS
s¼1

XT
t¼1

grstur � vs � wt
ð7Þ

where g 2 R
R�S�T is core tensor and U 2 R

X�R, V 2 R
Y�S, W 2 R

Z�T are three
projection matrices of each direction.

The Tucker decomposition is a form of higher-order principal component analysis.
It decomposes a tensor into a core tensor multiplied (or transformed) by a matrix along
each mode. In some cases, the storage for the decomposed version of the tensor can be
significantly smaller than for the original tensor. In the process of tensor recovery,
original tensors can be generally recovered by arranging the coefficients of these
components by values and adding the principal components.

1

1a

2 R

2a Ra

1b 2b Rb

1c 2c Rc

Fig. 2. Kruskal decomposition of a third-order tensor
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So the Tucker decomposition of X is illustrated in Fig. 3.

2.3 Multi-frame Image Denoising Tensor Model Based on CS

Because of the high sampling frequency in temporal dimension, contiguous frames are
very similar in video data. As a result, there’s a large amount of redundant information
over each frame. In this paper, cardiac ultrasound video is used as research data.
Cardiac ultrasound image sequences are shown in Fig. 4.

To begin with, images are divided into image blocks. After the sparse represen-
tation of these blocks, the integral image will be processed. The third-order Kruskal
tensor model is introduced in the sparse representation of image block sequences, and
the original images will be reconstructed by training the tensor dictionary. In this way,
the loss of spatial information is avoided in the process of turning image blocks into
one-dimensional signals. Meanwhile, the motional information of image blocks will be
utilized for denoising by considering temporal information. The model can be gener-
alized as:

X

= 1u1v 2v Sv

Ru
2u

U
V

W
1w 2w Tw

Fig. 3. Tucker decomposition of a third-order tensor

Fig. 4. Cardiac ultrasound image sequences
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X̂ k; D̂; Â
� � ¼ arg min

D;aijt ;X
k

Y � XffiffiffiffiXp
����

����
2

F

þ
X
ij2X

Xkþ f�1

t¼k�f þ 1

lijt aijt
�� ��

0 þ
X
ij2X

Xkþ f�1

t¼k�f þ 1

Daijt � RijtX
�� ��2

F

ð8Þ

A third-order tensor representing noiseless image sequences is denoted by X The
kth frame in X is denoted by X k , i.e. the noiseless form of the processing image. An
image sequence that contains noise is denoted by Y: An element of sparse coefficient
matrix A 2 R

K�N is denoted by aijt, K is the number of atoms in dictionary and N
equals to the number of blocks extracted from image sequences. The over-complete
tensor dictionary is denoted by four-way tensor D 2 R

m�n�f�K , the estimation of kth
noiseless frame is denoted by X̂ k , i.e. the resulting images after the process. When the
optimal solution of this optimization problem is obtained, the over-complete tensor
dictionary is denoted by D̂ and sparse coefficient matrix is denoted by Â. The position
of blocks in integral image is denoted by lijt and Rijt, in which the elements are either 0
or 1.

To solve the optimization problem described by (8), we suggest two steps to get the
results. Firstly, process the image block sequences and train the adaptive dictionary D:
Assuming that atoms of the tensor dictionary can represent each noiseless image
sequence sparsely, we have RijtX ¼ Daijt. Then the optimization problem can be
described as:

aijt
� �N

;D
� �

¼ argmin
aijt ;D

X
ij2X

XT
t¼1

lijt aijt
�� ��

0 þ
RijtY � DaijtffiffiffiffiffiffiffiffiffiffiDaijt
p

�����
�����
2

F

0
@

1
A ð9Þ

It is an optimization problem of two variate D and aijt, so sparse representation and
dictionary update are involved in the solution. In the optimum iterative procedure of
image sequences, D is fixed and corresponding sparse coefficient vector aijt is opti-
mized. In the dictionary update, the optimized sparse coefficient matrix A is fixed and D
is updated. Repeat this iteration until tensor dictionary D; which corresponds to the
processing image sequences, is obtained.

The second step is to define error rate of the sparse representation. Coefficient
matrix A is expected to be more sparse under the premise that error rate of the sparse
representation is less than a certain threshold value e, i.e.

min
aijt ;D

aijt
�� ��

0s:t:
RijtY �DaijtffiffiffiffiffiffiffiffiffiffiDaijt
p

�����
�����
2

2

� e ð10Þ

The image denoising begins with the adaptive dictionary D and the sparsity is
guaranteed in the above procedure. The optimization problem can finally be described
as:
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X̂k ¼ arg min
aijt ;X

k
Y � XffiffiffiffiXp
����

����
2

2
þ
X
ij2X

Xkþ f�1

t¼k�f þ 1

Dâijt � RijtX
�� ��2

2 ð11Þ

3 Method and Algorithm

3.1 Sparse Representation

Due to the high sampling frequency in temporal dimension in the ultrasound video
signal, we choose to collect the image block sequences that consists of the blocks in the
same position from each image frame [12]. The data collecting process is shown in
Fig. 5.

The processed image block sequences contain the information in both spatial
dimension and the temporal dimension, and they will be presented sparsely according
to the tensor dictionary [13, 14]. To avoid the loss of information of images in either
dimension, improved optimization algorithm based on tensor is proposed, called
Kruskal Tensor Orthogonal Matching Pursuit (KTOMP).

Image Block Sequences

Fig. 5. Image block sequences collecting process
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The steps of KTOMP are summarized in Algorithm 1.

3.2 Initialize Dictionary

In this paper, the dictionary is tensor dictionary and all the elements are rank-one
because the data is three-dimensional. Assuming the image blocks and elements are
tensors in space R

m�n�f and amount of elements is K. To begin with, three DCT
matrices are required, i.e. D1 2 R

m�K , D2 2 R
n�K , D3 2 R

f�K . Every atom in the
dictionary is generated by normalizing these three matrices and make up a third-order
tensor with the same column of each matrix. In this way, we obtain an initial DCT
rank-one tensor dictionary, shown in Fig. 6.

3.3 Tensor Dictionary Update

The CANDECOMP/PARAFAC(CP) decomposition [15] is applied to update the
tensor dictionary in this method. CP decomposition factorizes a tensor into a sum of

Fig. 6. Initial DCT rank-one tensor dictionary
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component rank-one tensors so that atoms in initial dictionary may keep rank-one in
the updating process. An error function is defined by:

E ¼ Y �DAffiffiffiffiffiffiffiDA
p

����
����
2

F

ð12Þ

The error function is defined as Frobenius-norm [16] of error tensors. Therefore, we
can update the atoms of tensor dictionary by:

E ¼ Y �DAffiffiffiffiffiffiffiDA
p

����
����
2

F
¼

Y �PK
k¼1

DkakTffiffiffiffiffiffiffiffiffiffiffi
DkakT

p
��������

��������

2

F

¼
Y �P

k 6¼p
DkakT

 !
�Dpa

p
TffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1
DkakT

s
����������

����������

2

F

¼ Ep �Dpa
p
TffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1
DkakT

s
����������

����������

2

F

ð13Þ

DA will approach Y after multiple iteration, and the last step is to compute a CP
decomposition of Ep in the denominator. In the end, we have optimum Dp and the
corresponding sparse coefficient apT .

3.4 Image Recovery

The optimization problem can be described as (11) and the output is the kth frame X̂ k.
Analytic solution is difficult to obtain, so the problem is transformed into a easier one
by introducing ~k as new coefficients. After derivation the solution is expressed as:

X̂ k ¼ ~kIþ
X
ij2X

Xk
t¼k�f þ 1

RT
ijtRijt

 !�1

~kYk þ
X
ij2X

Xk
t¼k�f þ 1

RT
ijtDâijt

 !
ð14Þ

4 Experimental Results

The proportionality coefficient of error rate e and noise mean variance rn is denoted by
C. Based on the previous studies, processed cardiac ultrasound images have better
PSNR when C = 8. The size of image blocks is 8 � 8, because larger size makes
sparse representation a time-consuming process, and smaller size leads to discontinu-
ous blocks between frames. Experiments proved that 3 frames can meet the require-
ments. The detailed parameters of simulation are summarized in Table 1.
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Table 1. Simulation parameters

Methods Assumptions

Lee Window size 5 � 5
Kuan Window size 3 � 3
NCDF Window size 3 � 3
SRAD Initial value Q0 = 0.5, Dt = 0.1
NMWD Wavelet decomposition level J = 3, Dt = 0.1
SRBF Window size 3 � 3
CS-based Image block size 8 � 8, frame f = 3, C = 8

(a)Original Image (b)Lee              (c)Kuan

(d)NCDF                    (e)SRAD                     (f)NMWD

(g)SRBF                       (h)CS-based

Fig. 7. Denoising performance comparison of CS-based method and traditional methods
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Figure 7 demonstrates the CS-based speckle denoising method has better perfor-
mance in noise reduction and keeps more edge information.

The performance difference is difficult to tell by visual inspection so quantitative
results is also required. We compute the remaining noise variance r2n in the processed
images to compare the denoising ability of the methods above. For r2n, lower is better.
It is given by:

r2n ¼
r2

m
¼

PM�1

i¼0

PN�1

j¼0
½Iði; jÞ � �Iði; jÞ�2

PM�1

i¼0

PN�1

j¼0
Iði; jÞ

ð15Þ

The remaining noise variance of images processed by different methods are sum-
marized in Table 2:

5 Conclusion

In this paper, we have proposed a CS-based denoising method using tensor model.
Considering the temporal redundancy in multi-frame images, video data is divided into
image block sequences and represented by tensor models. In addition, an improved
OMP based on Kruskal tensor decomposition is utilized in sparse representation.
Aiming at the training problem of rank-one tensor dictionary, CP decomposition is
applied in the tensor dictionary update. Using the trained dictionary, the noise is
separated and the images are recovered in the end. Simulations show that CS-based
method outperforms the traditional methods in both visual results and quantitative
ones.

Acknowledgement. This work is supported in part by National Natural Science Foundation of
China (No. 61671184, No. 61401120, No. 61371100) and National Science and Technology
Major Project (No. 2015ZX03001041).

Table 2. Experimental results of r2n

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

Original 9.2327 6.3542 7.7043 10.6013 9.3056
Lee 3.7621 2.0291 4.1677 5.4885 4.1175
Kuan 5.8392 3.4668 5.3789 7.2655 5.7603
NCDF 2.1080 1.1334 2.9522 3.9787 2.6482
SRAD 7.8007 2.2196 6.3844 8.3852 7.4011
NMWD 1.3690 1.4152 3.9535 6.0422 4.8639
SRBF 8.5283 3.6888 7.3209 9.5148 8.5044
CS-based 0.3909 0.7888 2.2784 3.1959 1.8510
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