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Abstract. Complex scenarios are characterized by harsh multipath con-
ditions. Recently, strong single reflections among multipath components
(MPC) are proved to improve localization performance such as data-
association (DA) and multipath components mitigation. We first pro-
pose a novel DA method, which figures out the relationship between
the received signals and scatters based on an expectation maximization
(EM) based Gaussian mixture model. Furthermore, sensors themselves
often have uncertainties to be estimated, we propose a joint estima-
tion method to obtain the final estimate. Simulation results show the
effectiveness of the algorithm by considering sensors’ uncertainties after
demapping. As a result, the proposed algorithm can fit applications of
large-scale wireless sensor networks (WSNs) in practice.
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1 Introduction

Wireless sensor networks (WSNs) [1] holds enough number of battery-powered
sensors to transmit wireless signals and communicate with their neighbors. Sen-
sors cooperatively estimate the state of one object by limited communication,
ranging, and processing abilities. The idea of localization in WSNs has driven a
myriad of applications like tracking, monitoring and control appliances [2].

In general, existing algorithms such as cooperative localization [3] and simul-
taneous localization and mapping (SLAM) [4] can work well in the desired line-
of-sight (LOS) scenarios. However, in commercial shopping area, indoor, urban
canyon or jungle scenario with scatters, these algorithms will experience severe
performance declines, as each sensor may receive the same signals traveled from
different paths in a time slot, i.e., multipath components (MPCs).

In [5], an iterative process is presented. Authors adopt time-of-arrival (TOA)
measurements to estimate the ranging probability density function pdf. However,
the static and i.i.d. assumptions of ranging pdf constrain its usage in practical
scenarios. A TOA technique to utilize single reflections is presented in [6]. This
research improves the performance but demands the whole map of layout and
previous estimate to data-association (DA).
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In this paper, we propose a expectation maximization (EM) method in Gaus-
sian mixture model to realize DA without the information of entire layout. Here
we focus on an expectation maximization (EM) process in Gaussian mixture
model. Gaussian mixture model is typically used in WSNs localization like [7].

This paper is organized as follows. Section 2 introduces the signal model.
Section 3 involves EM algorithm with Gaussian Mixture model. Section 4 elabo-
rates the proposed algorithm to estimate object’s location, followed by a compre-
hensive simulations in Sect. 5. Finally, concluding remarks are made in Sect. 6.

Fig. 1. A network with one anchor node S0, N(= 4) sensor nodes Si and L (= 8)
scatters with known number and tilt angles γk. S0 sends a TR signal. Then each node
i may receive several measurements (di,j).

2 System Model

We set a two-dimensional localization problem in Cartesian coordinate and this
work focuses on real multipath scenarios like Fig. 1.

Generally, sensor S0 is chosen as the reference sensor. Ranging measurement
d0,1 with the most accurate pseudo-range measurement is chosen to be a refer-
ence, which is calculated by d = τ̂1,TX × c. Then the i-th sensor obtains its j-th
TDOA measurement Δd̃i,j with zero mean Gauss white noise as

Δd̃i,j = di,j − d0,1 = g(θ̂i,j , γk)T (q − p̄i) − g(θ̂0,1, γS0)
T (q − p0) + ñi,j (1)

where object’s ground-truth position q � [xq yq]T , the i-th sensor’s original
position p̄i � [x̄i ȳi]T , where i = 1, · · · , N . In practice, the sensors may change
around their original positions. So we assume position’s uncertainty Δpi with
Gaussian distribution, which will discuss later. k denotes the index of scatter
associated to the measurement di,j , and γk is the known orientation of the k-th
scatter. We further denote

g(θ̂i,j , γk) =
1

cos(θ̂i,j − γk)
[cos γk, sin γk]. (2)
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which is decided by geometric Topology. θ̂i,j is the AOA measurement of the j-th
signal path at sensor i. With measurement noise, the estimated AOA measure-
ment is used to replace θi,j as θ̂i,j = θi,j + ηi,j , where ηi,j is noise with uniform
distribution, i.e., U [−η0, η0].

3 Data Association Algorithm

In [5], the single reflection MPCs can be distinguished from the received wave-
form. Let Δd̃i be the ranging block containing Mi measurements obtained in
sensor i. Generally, the ranging measurements comes from the scatters and LOS
components, but the sensor i doesn’t know the probabilities which measure-
ment stemming from which scatter or object directly from LOS path. Assuming
every range estimate has a certain weight αi,j,k, we obtain the Gaussian mixture
model as

p(Δd̃i,j , θ̂i,j |q,Δpi, θi,j) = p(θ̂i,j |θi,j)
Kj∑

k=1

αi,j,kΦ(Δd̃i,j |q,Δpi, θi,j) (3)

Φ(Δd̃i,j |q,Δpi, θi,j) =
1√
2πσ

exp(− (Δd̃i,j − μk)2

2σ2
) (4)

where αi,j,k ≥ 0,
∑Kj

k=1 αi,j,k = 1. q = (xq, yq).
As the first received signals in each sensor has the probability that coming

from LOS path instead of the single reflection (NLOS) path from the scatter
k(k ∈ L). L is the scatters’ number. So sensor i’s first signal has L+1 submodels
in Gaussian mixture model as Kj = L + 1(j = 1) or Kj = L(j! = 1), (L + 1)th
submodel means the LOS estimate.

The key to obtain the mapping information lies on the latent variable ρi,j,k,
which means one measurement coming from one certain submodel k.

ρi,j,k =
{

1 the measurement j coming from the model k
0 else

where ρi,j,k ∈ {0, 1}.
Having range estimate Δd̃i,j and latent variables ρi,j,k, we obtain the com-

plete data like (Δd̃i,j , ρi,j,1, · · · , ρi,j,Kj
). From the model assumptions, θ̃i is inde-

pendent of other variables in (Δd̃i,j , ρi,j,1, · · · , ρi,j,Kj
). Besides, scatter’s horizon-

tal angle and TDOA ranging measurements among sensors are also independent.
Here we express data’s log likelihood function in the following align

ln p(Δd̂, θ̂,ρ|x) = ln p({{{Δd̂i,j , θ̂i,j , ρi,j,k, }Kj
k=1}Mi

j=1}Ni=1|x)

=
N∑

i=1

Mi∑

j=1

ln p(θ̂i,j |θi,j) + ln p(Δd̂,ρ|q,Δp,θ) (5)
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where inaccurate sensors’ positions p̄ are used to solve the mapping issue in
subsection C, i.e. Δp’s influence is negligible first.

For item p(Δd̂,ρ|q,Δp,θ) in (5), we have a further mathematical expansion

p(Δd̂,ρ|q,Δp,θ) =
N∏

i=1

Mi∏

j=1

p(Δd̂i,j , ρi,1, ρi,2, · · · , ρi,Mi
|q,Δp,θ)

=
N∏

i=1

Mi∏

j=1

Kj∏

k=1

[αi,j,kΦ(Δd̂i,j |q,Δpi, θi,j)]ρi,j,k (6)

Based on the TDOA and AOA method, each submodel is shown as

Φ(Δd̂i,j |q,Δpi, θi,j) =
1√

2πσi

exp(− 1
2σ2

i

(Δd̂i,j + g(θ̂i,j , γk)T p̄i − g(θ0, γk)Tp1

− (g(θ̂i,j , γk) − g(θ0, γk))Tq)2

Then the item in (6)’s log-likelihood function is

ln p(Δd̂,ρ|q,Δp,θ) =
N∑

i=1

Mi∑

j=1

Kj∑

k=1

(7)

ρi,j,k

[
lnαi,j,k + ln(

1√
2π

) − ln σi − 1
2σ2

i

(Δd̂i,j − μi,j)2
]

where μi,j = g(θ̂i,j , γk)T (q − pi) − g(θ0, γk)T (q − p0). We define nk as the
number of submodel k among all the measurements in sensors. So nk =∑N

i=1

∑Mi

j=1 ρi,j,k,
∑Kj

k=1 nk = N . So (7) can be reformulated as

3.1 E Step of the EM Algorithm

In order to obtain Q function in lth iteration, we have

Q(x,xl) = E[ln p(Δd̂, θ̂,ρ|x)|ρ,q(l),Δp,θ] (8)

=E
{ N∑

i=1

Mi∑

j=1

ln p(θ̂i,j |θi,j) +
N∑

i=1

Mi∑

j=1

Kj∑

k=1

ρi,j,k

[
ln αi,j,k + ln(

1√
2π

) − ln σi − 1
2σ2

i

(Δd̂i,j − μk)2
]

We define E(ρi,j,k) as ρ̂i,j,k.

ρ̂l+1
i,j,k = E(ρi,j,k) ==

ρ̂l
i,j,kΦ(Δd̂i,j |ql+1,Δpi, θi,j)

∑Kj

k=1 ρ̂l
i,j,kΦ(Δd̂i,j |ql+1,Δpi, θi,j)

(9)

where ρ̂l+1
i,j,k names the possible weight of model k to the observed data Δd̂i,j .
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Using ρ̂i,j,k = E(ρi,j,k)

Q(x,xl) =
N∑

i=1

Mi∑

j=1

ln p(θ̂i,j |θi,j)
N∑

i=1

Mi∑

j=1

Kj∑

k=1

ρ̂i,j,k+

[
ln αi,j,k + ln(

1√
2π

) − ln σi − 1
2σ2

i

(Δd̂i,j − μi,j)2
]

(10)

3.2 M Step of the EM Algorithm

After the E step, iterative M step for maximum Q is

ql+1 = arg max
q

Q(q,ql)

After some manipulations, we can obtain

ql+1
x =

∑N
i=1

∑Mi

j=1

∑Kj

k=1 ρ̂l
i,j,k(Δd̂i,jAi,j − Ai,jBi,jq

(l)
y + Ai,jCi,j)/σ2

i
∑N

i=1

∑Mi

j=1

∑Kj

k=1 ρ̂i,j,kA2
i,j/σ2

i

(11)

ql+1
y =

∑N
i=1

∑Mi

j=1

∑Kj

k=1 ρ̂l
i,j,k(Δd̂i,jBi,j − Ai,jBi,jq

(l)
x + Bi,jCi,j)/σ2

i
∑N

i=1

∑Mi

j=1

∑Kj

k=1 ρ̂i,j,kB2
i,j/σ2

i

(12)

where Ai,j = ai,j − a0, Bi,j = bi,j − b0, Ci,j = ai,j x̄i + bi,j ȳi − a0x0 − b0y0,
which ai,j = cos γk

cos(θi,j−γk)
a0 = sin γk

cos(θ0−γk)
bi,j = sin γk

cos(θi,j−γk)
b0 = sin γk

cos(θ0−γk)
.

This is a coarse position estimation without considering the AOAs’ measurement
errors and sensors’ uncertainties, so we use it as the initial guess in the following
section.

Furthermore, α̂i,j,k is obtained by q̂ and Laplace method under the constrain
of

∑Kj
k=1 α̂i,j,k = 1.

αl+1
i,j,k = arg max

αi,j,k
Q(αi,j,k, αi,j,k

(l)) = ρ̂l+1
i,j,k (13)

where k = 1, 2, · · · ,Kj . Repeat this EM process Niter times until log likelihood
value are no longer changes obviously. The influence of Δpi to mapping is dis-
cussed in simulations.

3.3 Demapping

After we obtain the coarse position of object, we use the updated Gaussian mix-
ture model to realize the parameter evaluation, which means demapping. After
calculation, if αi,j,k’s value is the biggest and exceed the empirical threshold
in measurement Δd̂i,j , we choose the corresponding submodel to describe the
likelihood distribution

p(Δd̂i,j |q,Δpi, θi,j) = p(θ̂i,j |θi,j)
Kj∑

k=1

[αi,j,kΦ(Δd̃i,j |q,Δpi, θi,j)]ρi,j,k (14)
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where ρi,j,k = 1 if and only if αi,j,k’s value is the biggest and exceed the threshold,
otherwise, ρi,j,k = 0.

If ρi,j,k = 1 and k ≤ L, the measurement is NLOS signal, else if the mea-
surement is assumed LOS(ρi,j,k = 1 and k = L + 1).

4 Centralized Algorithm

As sensors’ position may move as time passes by. Here we further consider sensor
position’s uncertainty Δpi, which turns to be the parameter of interest in pi =
p̄i + Δpi. To further improve the positioning performance by joint estimation,
we will update the sensor uncertainty’s influence in (1) as

Δd̂i,j = g(θ̂i,j , γk)T (q − p̄i) − g(θ0, γk)T (q − p0) + n̂i (15)

Then we derive the likelihood function based on (14):

p̃(Δd̂i,j ,Δpi|q, p̄i, θi,j) = p(θ̂i,j |θi,j)α′′
i,j,ki,j

Φ̃(Δd̃i,j ,Δpi|q, p̄i, θi,j). (16)

Since the measurements are independent to each other,

p̃(Δd̂,Δpi|q,p,θ) =
∏

i∈N

∏

j∈Mi

p̃(Δd̂i,j , θ̂i,j ,Δpi|q, p̄i, θi,j). (17)

Here we define sets called N = {1, 2, ..., N} and Mi = {1, 2, ...,Mi}. Since
Δpi is independent of other random variables in the complete data, we fix other
interested parameters to obtain the new Q̃ function with the addition of Δpi as

Q̃(q,q′) = E[ln p̃(Δd̂,Δpi|q,p,θ)|Δd̂,α′′,q′] (18)

=
∑

i∈N

∑

j∈Mi

∫
p(Δpi|Δd̂i,j , p̄i, q

′) × ln p̃(Δd̂i,j ,Δpi|q, p̄i, θi,j)dΔpi

in which

ln p̃(Δd̂i,j ,Δpi|q, p̄i, θi,j) = ln p(θ̂i,j |θi,j)α′′
i,j,k + ln Φ̃(Δd̃i,j ,Δpi|q, p̄i, θi,j)

Substitute the align into (18). The first item doesn’t contain the parameter of
interest q to realize Q function minimization, which can be dropped. Q̃i(q,q′)
can be reformulated as

Q̃i(q,q′) =
∫

p(Δpi|Δd̂i,j , p̄i, q
′) × ln Φ̃(Δd̃i,j ,Δpi|q, p̄i, θi,j)dΔpi (19)

By Bayes’ rule, the posterior distribution of sensor i’s position uncertainty in
(19) is derived as

p(Δpi|Δd̂i,j , p̄i, q
′) ∝ p(Δpi)

∏
j∈Mi

p(Δd̂i,j , θ̂i,j |q, p̄i,Δpi, θi,j) (20)
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Generally, the posterior distribution of sensor i’s position uncertainty is
intractable to be analyzed and calculated with low complexity, thus rendering
the closed form of KullbackCLeibler divergence (KLD) as

DKL(f ‖ p) =
∫

f(Δpi) ln
f(Δpi)
p(Δpi)

dΔpi. (21)

Single Reflections. Combining the updated model in (15), then the global
Δp′′ with vector form can be expressed as

Δp′′ = arg min
Δp

{
DKL(Δp;α′′,q′, θ̂)

}
(22)

As each sensor’s uncertainty is i.i.d. with other sensors, the maximize the
global DKL(Δp;α′′,q′, θ̂) is equivalent to obtain the extreme value in each
DKL(Δpi;α′′

i ,q′, θ̂i).
The minimization of KLD can be derived by the partial derivatives of

DKL(f ‖ p) with respect to Δx̄i,Δȳi and σ̄2
Δpi

and setting the results are zeros.
After some manipulations, we have Δp′′ = (Δx′′

i ,Δy′′
i ), where

Δx′′
i =

Δy′
i

(1−ρ2)σΔxi
σΔyi

+
∑Mi

j=1
1

σ2
i
(Ei,j − ai,jbi,jΔy′

i)
1

(1−ρ2)σ2
Δxi

− 1
σ2

i

∑Mi

j=1 a2
i,j

, (23)

Δy′′
i =

Δx′
i

(1−ρ2)σΔxi
σΔyi

+
∑Mi

j=1
1

σ2
i
(Fi,j − ai,jbi,jΔx′

i)
1

(1−ρ2)σ2
Δyi

− 1
σ2

i

∑Mi

j=1 b2i,j
(24)

σ̄pi
=

√
2(1 − ρ2)

(1 − ρ2)σ2
Δxi

σ2
Δyi

∑Mi
j=1(a

2
i,j + b2i,j) + σ2

i (σ2
Δxi

+ σ2
Δyi

)
σiσΔxiσΔyi (25)

Then x′′
i = x̄i + Δx′′

i , y′′
i = ȳi + Δy′′

i .
Finally, we derive the closed form of Q function of the j-th measurement in

sensor i as

Q̃i,j(q,q′) =
∫

f(Δpi|Δd̂i, p̄i,q
′) ln Φ̃(Δd̃i,j ,Δpi|q, p̄i, θi,j)dΔpi

= − 1
2σ2

i

[
(ai,j − a0)2q2x + (bi,j − b0)2q2y − 2(ai,j − a0)

Hi,jqx − 2(bi,j − b0)Hi,jqy + 2Ki,jqxqy

]
+ C (26)

where

Hi,j =Δd̃i,j + ai,jx
′′
i + bi,jy

′′
i − a0x0 − b0y0, (27)

Ki,j =ai,jbi,j + a0bi,j + ai,jb0 + a0b0. (28)
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For each sensor i ∈ NLOS with Mi measurements, we obtain the global Q
function as

Q̃(q,q′) ∝ −
∑

i∈NLOS

∑Mi

j=1

1
2σ2

i

[
(ai,j − a0)2q2x + (bi,j − b0)2q2y−

2(ai,j − a0)Hi,jqx − 2(bi,j − b0)Hi,jqy + 2Ki,jqxqy

]
(29)

Finally, we can obtain the estimate of object like

q′′
x =

∑
i∈NNLOS

∑Mi

j=1
1

σ2
i

[
(ai,j − a0)Hi,j + Ki,jq

′
y

]

∑
i∈NNLOS

∑Mi

j=1
1

σ2
i
(ai,j − a0)2

(30)

q′′
y =

∑
i∈NNLOS

∑Mi

j=1
1

σ2
i

[
(bi,j − b0)Hi,j + Ki,jq

′
x

]

∑
i∈NNLOS

∑Mi

j=1
1

σ2
i
(bi,j − b0)2

(31)

5 Simulation Results

To evaluate the performance of the proposed algorithm in a centralized imple-
mentation, we realize the passive localization in a 100 × 100m2 plane with one
anchor node S0 and four receiver node S1, S2, · · · , S4 as shown in Fig. 1. The
parameters related to the simulations are summarized in Table 1. Each nodes’
positions are p1 = [20 20]T ,p2 = [80 30]T ,p3 = [60 90]T ,p4 = [70 70]T .
The corresponding scatter orientations is γ = [0◦, 86◦, 150◦, 90◦, 111◦, 55◦,
135◦, 11◦]. Furthermore, the ground-truth AOAs are θ = [45◦; 135◦;−135◦ 18.4◦;
0◦;−170◦ − 15.9◦]. In this simulation scenario, sensor nodes (S1–S4) received
number of measurements (|M1|–|M4|) as [1, 2, 1, 2]T respectively.

We consider a Monte Carlo experiment with 1000 independent trials in Fig. 2.
An initial guess of the proposed algorithm is tested according to the proposed
data association method in Sect. 3. However, without considering sensors’ uncer-
tainties, the value of each submodel’s weights are fluctuated and improve the
risk of mismatch in demapping process. Therefore, the positioning performance
of the data association method with different level of sensor position uncertainty
is generally worse than the ideal case without uncertainties. We also estimate
the position based on [5] for the comparison purpose. The error of [5] is larger
than our method as the assumption that all the TDOA ranging have the same
noise pdf. Compared with these five CDFs, the quality of demapping is reliable
with uncertainties and effective than [5] even with uncertainties.

More precisely, we optimize the positioning performance including sensors’
uncertainties by aligns (30) and (31) in Fig. 3. After sufficient number of itera-
tions, we can figure out the location errors are smaller than Fig. 2 as we itera-
tively update the object and sensors’ positions simultaneously. For comparable
reasons, we also estimate the method in As TOA based method in [5] is valu-
able to the i.i.d. assumption, the performance will be worse considering sensors’
uncertainties in Fig. 2’s description.
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Table 1. Major parameters in data association based algorithms.

Parameter Note Value

L×W Space dimensions 100 m × 100 m

p0 Anchor node S1 [10 m 70 m]T

q Object node [40 m 50 m]T

αi,j,k Submodels’ weight 1/Kj

Δpi Sensor i’s uncertainty Δpi ∼ N (
0, σΔp i

)
σΔd̂ Ranging std. deviation for Δd̂ 1 m

ηi,j Ranging std. deviation for AOA ηi,j ∼ Unif[−3◦, 3◦]

Kj Submodels for first MPC K1 = 6

Submodels for other MPCs Kj = 5, j ≥ 1
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Fig. 2. Coarse location error based on different sensors’ uncertainties.
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Fig. 3. Location errors based on proposed algorithm.

6 Conclusion

In this paper, we proposed a low complexity multipath aided algorithm to local-
ization. For a further extension, we will study how to reduce the constrained
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known information to generalize the proposed algorithms and reduce the com-
putational complexity.
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