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Abstract. The signal processing on graphs has been widely used in var-
ious fields, including machine learning, classification and network signal
processing, in which the sampling of bandlimited graph signals plays an
important role. In this paper, we discuss the sampling of bandlimited
graph signals based on the theory of function spaces, which is consistent
with the pattern of the Shannon sampling theorem. First, we derive an
interpolation operator by constructing bandlimited space of graph sig-
nals, and the corresponding sampling operator is also obtained. Based
on the relationship between the interpolation and sampling operators,
a sampling theorem for bandlimited graph signals is proposed, and its
physical meaning in the graph frequency domain is also given. Further-
more, the implementation of the proposed theorem via matrix calculation
is discussed.
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1 Introduction

With the rapid development of information technology, the demand for large-
scale data processing is growing, such as signals from social, biological, and sensor
networks. Different from traditional timeseries or images, these structured signals
are interconnected. The underlying connectivities between data points naturally
reside on the structure of graphs, which leads to the emerging field of signal
processing on graphs. In recent years, the graph signal processing has been widely
used in various application domains such as machine learning, classification and
network signal processing [1,2].

The sampling theory plays a fundamental role in digital signal processing.
The traditional Shannon sampling theorem bridges the continuous and discrete
domains. Unlike traditional sampling, the sampling for graph signals is more
challenging because the paradigm of leveraging frequency folding phenomenon
cannot be defined for graph signal due to its irregular structure. Therefore, the
sampling for graph signals has drawn lots of attention. Unfortunately, existing
works on sampling of graph signals [4–7] do not reveal the clear physical mean-
ing in the graph frequency domain, and the implementation of graph signal sam-
pling and reconstruction is still not discussed in the literature. Towards this end,
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we propose a new derivation of the sampling for bandlimited graph signals based
on the theory of function spaces. We first derive an interpolation operator by
constructing bandlimited space of graph signals, and then obtain its correspond-
ing sampling operator. Based on the relationship between these two operators, a
sampling theorem for bandlimited graph signals is proposed. The physical mean-
ing of the sampling and reconstruction process in the graph frequency domain is
also given. Furthermore, the implementation of the proposed theorem via matrix
calculation is presented. Finally, a numerical example of the derived results is
given.

The rest of the paper is organized as follows. Some facts of signal processing
on graphs are introduced in Sect. 2. Section 3 discusses the sampling for ban-
dlimited signals defined on graph. Finally, a conclusion is made in Sect. 4.

2 Preliminaries

In this chapter, some basic concepts of discrete signal processing on graphs [1–3]
are given, which are generalized from the traditional discrete signal processing.

Graph Signal. Discrete signal processing on graphs is focused on the signal
with irregular and complex internal structure, which can be represented by a
graph G = (V,A), where V = [v0, v1, · · · , vN−1] denotes the set of nodes and
A ∈ C

N×N , the weighted adjacency matrix, means the graph shift. Given a graph
representation G = (V,A), a graph signal is defined as the map on the graph
nodes that assigns the signal coefficient fn ∈ C to the node vn. The edge weight
Am,n between vm and vn can express the correlation and similarity between the
signals defined on those two nodes. When the order of the nodes is determined,
the graph signal can be represented by a vector

f = [f0 f1 · · · fN−1]T ∈ C
N . (1)

For simplicity, assume A can be completely decomposed as follows (unless A
should be decomposed on a set of Jordan eigenvectors)

A = VΛV−1 (2)

where the columns of matrix V is the eigenvectors of A, and Λ is the diagonal
matrix of corresponding eigenvalues λ0, · · · , λN−1 with λ0 >, · · · , > λN−1.

Graph Fourier Transform. Generally, a Fourier transform can achieve the
expansion of a signal on a set of basis functions which are invariant to filtering.
The eigenvectors (or the Jordan eigenvectors) of the graph shift A just satisfy the
requirement [1,3], so the graph Fourier transform and the inverse graph Fourier
transform can be respectively defined as

f̂ = V−1f (3)
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f = Vf̂. (4)

Eigenvalues λ0 >, · · · , > λN−1 denote the lowest to the highest frequencies of
graph signals, with a descending order of the eigenvalues [3]. Eigenvectors of
different frequencies correspond to different graph frequency components.

3 A Sampling Theorem of Bandlimited Graph Signals

For finite-dimentional discrete signal, sampling and interpolation mean the
decrease and increase of the dimension of input signal. Thus the sampling and
interpolation of a graph signal f ∈ C

N can be respectively expressed as

g = Ψf ∈ C
M (5)

f̃ = Φg = ΦΨf = Pf ∈ C
N , (6)

where M<N , g is the sampled graph signal, and matrix Ψ ∈ C
M×N and Φ ∈

C
N×M denote the sampling and interpolation operators respectively, and

P = ΦΨ ∈ C
N×N (7)

with
Ψ∗ = (ψ0, · · · , ψM−1) ∈ C

N×M (8)

Φ = (φ0, · · · , φM−1) ∈ C
N×M (9)

where ψi ∈ C
N and φi ∈ C

N . If vectors ψ0, · · · , ψM−1 and φ0, · · · , φM−1 con-
stitute two sets of basis of signal space Ss = span{ψ0, · · · , ψM−1} and Si =
span{φ0, · · · , φM−1}, the sampling (5) and interpolation (6) can be regarded as
the expansion and combination of signal f in the two spaces, where Ss and Si

represent the sampling and interpolation spaces respectively.

3.1 Sampling and Interpolation in Bandlimited Graph Signal Space

Similar to the Shannon theorem, for the possibility of perfect recovery, we con-
sider bandlimited graph signals, i.e., the input signal f is in bandlimited space.

A graph signal f is called bandlimited when there exists a K ∈ {0, · · · , N −1}
such that its graph Fourier transform f̂ satisfies

f̂i = 0 for all i ≥ K. (10)

The smallest K is the bandwidth of f. All the graph signals in C
N with bandwidth

of at most K can form a closed bandlimited subspace, represented by BLK .
Perfect recovery equals to achieve f̃ = f. Thus given f ∈ BLK , f̃ ∈ BLK must

be satisfied. From (6) we can know f̃ ∈ Si, so the problem has been transformed
into the construction of the bandlimited interpolation space which should satisfy:

Si = span{φ0, · · · , φM−1} = BLK . (11)
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The graph Fourier transform of interpolation operator Φ can be written as

Φ̂ = V−1Φ = (V−1φ0, · · · ,V−1φM−1)

= (φ̂0, · · · , φ̂M−1)
(12)

where φ̂i is the graph Fourier transform of vector φi. For vector u ∈ Si with
expansion coefficients a0, · · · , aM−1 on basis φ0, · · · , φM−1, û is as follows

û = V−1u = V−1(φ0, · · · , φM−1)(a0, · · · , aM−1)T

= (φ̂0, · · · , φ̂M−1)(a0, · · · , aM−1)T

= a0φ̂0 + · · · + aM−1φ̂M−1

(13)

where φ̂0, · · · , φ̂M−1 form a new set of basis in graph frequency domain, and
û ∈ span{φ̂0, · · · , φ̂M−1}. Thus if φ̂0, · · · , φ̂M−1 satisfy (10), (11) holds true.

If φ̂0, · · · , φ̂M−1 satisfy (10), then we have

Φ̂ = Φ̂BL = V−1Φ = V−1(φ0, · · · , φM−1) = (φ̂0, · · · , φ̂M−1)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ̂0(1)
...

φ̂0(K)
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, · · · ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ̂M−1(1)
...

φ̂M−1(K)
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ̂01 · · · φ̂(M−1)1

...
. . .

...
φ̂0K · · · φ̂(M−1)K

0 · · · 0
...

. . .
...

0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

Q
0 · · · 0
...

. . .
...

0 · · · 0

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
N×M

=

⎛
⎜⎜⎜⎝

IK×K

0 · · · 0
...

. . .
...

0 · · · 0

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
N×K

Q

(14)

where I is the unit matrix, and the coefficient matrix Q ∈ C
K×M includes all

the nonzero frequency contents of bandlimited vectors φ̂0, · · · , φ̂M−1:

Q =

⎛
⎜⎝

⎛
⎜⎝

φ̂0(1)
...

φ̂0(K)

⎞
⎟⎠ , · · · ,

⎛
⎜⎝

φ̂M−1(1)
...

φ̂M−1(K)

⎞
⎟⎠

⎞
⎟⎠ =

⎛
⎜⎝

φ̂01 · · · φ̂(M−1)1

...
. . .

...
φ̂0K · · · φ̂(M−1)K

⎞
⎟⎠ . (15)

And V−1V = IN×N is true, so we have

V−1 · V(K) =

⎛
⎜⎜⎜⎝

IK×K

0 · · · 0
...

. . .
...

0 · · · 0

⎞
⎟⎟⎟⎠ (16)
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where V(K) ∈ C
N×K denotes the first K columns of V ∈ C

N×N, and satisfies

V(K) · Q = V

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ̂0(1)
...

φ̂0(K)
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, · · · ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ̂M−1(1)
...

φ̂M−1(K)
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= VΦ̂BL = Φ. (17)

Then combining (16) and (17), (14) can be expressed as

Φ̂BL =

⎛
⎜⎜⎜⎝

Q
0 · · · 0
...

. . .
...

0 · · · 0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

IK×K

0 · · · 0
...

. . .
...

0 · · · 0

⎞
⎟⎟⎟⎠ Q = V−1 · V(K) · Q = V−1Φ (18)

so that we can get
Φ = V(K)Q. (19)

By (19), the interpolation operator Φ can be constructed uniquely using a given
coefficient matrix Q, and simultaneously the interpolation space Si satisfies (11).

The interpolation operator Φ can be built through (19), so the next step of
perfect recovery is to find the corresponding sampling operator Ψ.

Under the sampling theory for finite-dimensional vectors discussed in [8],
two requirements must be satisfied for perfect recovery: (1) input signal f ∈ Si =
span{φ0, ..., φM−1} = BLK ; (2) P = ΦΨ is a projection operator, satisfying

P2 = P. (20)

The first requirement can be guaranteed by (19) when given a graph signal
f ∈ BLK , and the second one (20) just implies the relation between Φ and Ψ.

From (7) and (19) we obtain

P = ΦΨ = V(K)QΨ (21)

so (20) can be written as

P2 = ΦΨ · ΦΨ = V(K)QΨ · V(K)QΨ

= V(K) · (
QΨV(K)

) · QΨ = V(K) · W1 · QΨ

= V(K)Q · (
ΨV(K)Q

) · Ψ = V(K)Q · W2 · Ψ
= P = V(K)QΨ

(22)

where W1 = QΨV(K) ∈ C
K×K and W2 = ΨV(K)Q ∈ C

M×M . To achieve f̃ =
f ∈ BLK , sampled signal g ∈ C

M must include at least K graph frequencies to
avoid the truncation error. Thus the dimension M should satisfy M ≥ K. Then
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for Q ∈ C
K×M , rank

(
W2 = ΨV(K)Q

) ≤ rank (Q) ≤ K ≤ M ; and W2 = IM×M

only when M = K. So to make (22) true, W1 = IK×K should be satisfied, i.e.,

QΨV(K) = IK×K . (23)

The relation between Φ and Ψ is given by (23). From (19) and (23), Φ and
Ψ can be uniquely obtained. However, there are 3 unknowns in this problem: Φ,
Ψ and Q, so one of them must be built first to fix the rest. For the feasibility
and simplicity of sampling, we construct the interpolation operator Ψ first and
conclude the following sampling theorem for graph signals.

Theorem 1. For the sampling operator Ψ ∈ C
M×N and interpolation operator

Φ ∈ C
N×M of a bandlimited graph signal f ∈ BLK ∈ C

N , if M ≥ K and
rank (Ψ) ≥ K are true, then the perfect recovery of f can be achieved, where M
is the total sample number, with

Φ = V(K)Q and QΨV(K) = IK×K . (24)

The restriction of M ≥ K and rank (Ψ) ≥ K in Theorem 1 provides the
instruction for building sampling operator Ψ ∈ C

M×N , and the results are varied.
When this restriction is not satisfied or f /∈ BLK , perfect recovery is impossible
due to the truncation error in the graph frequency domain.

By Theorem 1, the implementation steps for the sampling and interpolation
of bandlimited graph signals are as follows:

(i) Select the total sample number M , satisfying M ≥ K;
(ii) Build operator Ψ with rank (Ψ) ≥ K and sample the input signal: g = Ψf;
(iii) Calculate Q using QΨV(K) = IK×K ;
(iv) Obtain Φ by Φ = V(K)Q and recover the signal: f̃ = ΦΨf.

3.2 Numerical Example

The perfect recovery of graph signals can be obtained via the given steps, and
the choices of sampling operator Ψ are varied. Next, we take one of them as an
example to demonstrate the validity of the proposed theorem.

We consider a 5-node graph with adjacency matrix

A =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 1
1 0 1 0 1
0 1 0 0 1
0 0 0 0 1
1 1 1 1 0

⎤
⎥⎥⎥⎥⎦

(25)

and the corresponding inverse graph Fourier transform matrix is

V =

⎡
⎢⎢⎢⎢⎣

0.45 0.29 0.71 0.41 0.22
0.45 0.29 0 −0.82 0.22
0.45 0.29 0.71 0.41 0.22
0.45 −0.87 0 0 0.22
0.45 0 0 0 −0.90

⎤
⎥⎥⎥⎥⎦

. (26)
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Fig. 1. Sampling and interpolation of graph signal f = [f0 f1 f2 f3 f4]
T.

We input a graph signal f with bandwidth K = 3 as

f =
[
3.5643 −2.2893 2.1501 1.2213 −2.4374

]T
. (27)

Without loss of generality, we let the number of samples be M = K = 3, and
let rank (Ψ) = K. One possible sampling operator Ψ with simple form is

Ψ =

⎡
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

⎤
⎦ (28)

and we can obtain the following interpolation operator Φ by matrix calculation

Φ =

⎡
⎢⎢⎢⎢⎣

1.0000 −0.0000 −0.0000
0.0000 1.0000 0.0000

−0.0000 0.0000 1.0000
0.5411 0.8172 0.5411

−0.9086 −1.2033 −0.9086

⎤
⎥⎥⎥⎥⎦

. (29)

Then we can get following sampled signal g and recovered signal f̃

g =
[
3.5643 −2.2893 2.1501

]T (30)

f̃ =
[
3.5643 −2.2893 2.1501 1.2213 −2.4374

]T (31)

where (31) implies the perfect recovery achieved and can be expressed as Fig. 1.
As mentioned above, the choices of the sampling operator Ψ are not unique.

The following options of Ψ can also lead to perfect recovery

Ψ1 =

⎡
⎣

1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

⎤
⎦ Ψ2 =

⎡
⎣

1 0 0 0 0
0 0 0 1 0
0 0 1 0 1

⎤
⎦ Ψ3 =

⎡
⎣

2 0 0 0 0
1 2 3 4 0
0 0 1 0 10

⎤
⎦ (32)

as long as the restriction in Theorem 1 can be guaranteed.
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4 Conclusion

In this paper, a new derivation for the sampling theorem of bandlimited graph
signals is proposed based on the theory of function space. After introducing nec-
essary preliminaries of signal processing on graphs, an interpolation operator is
derived by constructing bandlimited space of graph signals, and the correspond-
ing sampling operator is also obtained. On the basis of the relationship between
the interpolation and sampling operators, a sampling theorem for bandlimited
graph signals is obtained. Our proposed result states that perfect recovery is
possible for bandlimited graph signals, and the theorem can be achieved easily
in practice via matrix calculation, with the implementation given in the paper.
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