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Abstract. Unmanned aerial vehicle (UAV) has found promising appli-
cations in both military and civilian domains worldwide. In this arti-
cle, we investigate the problem of distributed opportunistic spectrum
access under the consideration of channel-slot selection simultaneously
in multi-UAV networks from a game-theoretic perspective, and take into
account the distinctive features of the multi-UAV network. We formu-
late the distributed joint channel-slot selection problem as a weighted
interference minimization game. We prove that the formulated game is
an exact potential game, and then use the distributed stochastic learning
automata based joint channel and time slot selection algorithm to achieve
the pure-strategy Nash equilibrium. The algorithm does not need infor-
mation exchange among UAVs in the network which is more suitable for
dynamic and practical enviroment. The simulation results demonstrate
the effectiveness of the algorithm.
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1 Introduction

Unmanned aerial vehicle (UAV) has found promising applications in military
areas and holds an important position in complex tactical offensive/defensive
missions and natural security, such as surveillance and reconnaissance [1,2],
information collection, etc. Meanwhile, its broad potential applications in the
civilian domain have drawn great attention all over the world. It can be applied
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in many fields such as source seeking [3], target detection and localization [4],
disaster sensing [5], communication coverage expansion [6].

With the development of technology, the multi-UAV network has been
attached much attention to accomplish complex and dangerous tasks. The task
of how to allocate scarce spectrum resource and mitigate the interference among
the UAVs should be first addressed. Fortunately, opportunistic spectrum access
(OSA) has been regarded as an efficient technology to deal with the spectrum
shortage problem. Amount of research on OSA, e.g., [7–9], validates its effective-
ness, therefore the solution can be applied in multi-UAV networks.

However, most existing research about OSA technology only studies either
the channel resource or time slot resource. The limited spectrum resources can
not meet the communication demands of large-scale multi-UAV network in the
future, it is desirable to use time resource reasonably [10]. Therefore, the joint
channel-slot selection scheme is one of the most powerful methods to solve the
issues discussed above. Meanwhile, compared with the OSA systems in [7–9],
there are several distinctive features of the multi-UAV network: (1) UAVs in the
same cluster tend to choose the same channel when they have enough time slot
resource; (2) considering the spatial locations of UAV clusters, the utility of the
cluster is only affected by its nearby clusters, namely its neighbors; and (3) the
experienced interference of UAV n can be divided into intra-cluster and inter-
cluster interference, which represent the interference among UAVs belonging to
the same cluster as UAV n and the neighboring clusters respectively.

The main contributions of this article are summarized as follows:

(1) We investigate the joint channel-slot selections of UAVs. Moreover, we distin-
guish intra-cluster and inter-cluster interference by formulating this problem
as a weighted interference minimization game. The game is an exact poten-
tial game with at least one pure-strategy Nash equilibrium. Futhermore, this
solution can minimize the aggregate interference level.

(2) In the distributed stochastic learning automata based joint channel and time
slot selection algorithm, we consider the random payoff with the distinctive
feature of multi-UAV network, e.g., UAVs in the same cluster choose the
same channel when the slot resource is enough to suppress interference.

The remainder of this article is organized as follows. Section 2 discusses the
system model and problem formulation. In Sect. 3, we formulate the weighted
interference minimization game model and present theorem for the existence
of NE. Then we use SLA based algorithm to achieve the optimum. Finally,
simulation results for verifying the proposed game model are discussed in Sect. 4
while Sect. 5 contains the conclusion of this article plus some open issues for
further work.

2 System Model and Problem Formulation

2.1 System Model

Consider a multi-UAV network involving N UAVs which belong to Q clusters.
There are M channels and T time slots available for UAVs in each cluster.
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Fig. 1. Corresponding interference graph of the multi-UAV network example, where
the dotted lines represent the interference between two UAV clusters while the solid
lines mean the interference among the UAVs in the same cluster.

Denote UAV set and cluster set as N = {1, 2, ..., N} and SQ = {S1, S2, ..., SQ}
respectively; moreover, the set of the available channel is M = {1, 2, ...,M}.
Similarly, the time slot set is denoted as T = {1, 2, ..., T}. Suppose that the
UAVs in the same cluster affect each other due to the connectivity inside the
UAV cluster. Meanwhile, when the distance between two clusters is far enough,
they will not cause mutual interference when choosing the same channel at the
same time. That is, the communication of any cluster only directly affects the
neighboring clusters. Therefore, for an arbitrary UAV n, the interference can be
divided into intra-cluster and inter-cluster interference level. Motivated by these
observations, we define the set of UAVs which are located in the same cluster
with UAV n as Un = {i ∈ Sq, i �= n}. Similarly, we denote the neighboring
UAV cluster set of UAV cluster Sq as JSq

, i.e., JSq
= {Sk ∈ SQ : dSqSk

< d0};
moreover the set of UAVs in the JSq

can be defined as Jn = {j ∈ Sk : Sk ∈ JSq
}.

An example topology of multi-UAV network is illustrated in Fig. 1.

2.2 Problem Formulation

Suppose that all channels and time slots are available for multi-UAV network.
The interference emerges when two or more UAVs select the same channel to
communicate at the same time. Let an = (cn, tn) be the channel and slot chosen
by UAV n, where cn ∈ M, tn ∈ T . The intra-cluster and inter-cluster interference
level are defined as follows.

sn(in) =
∑

i∈Un

f(an, ai) (1)

sn(out) =
∑

i∈Jn

f(an, ai). (2)

where f(an, ai) is the function defined as:

f(an, ai) =
{

1, cn = ci and tn = ti
0, others.

. (3)
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Note that sn(in) and sn(out) are in different positions, we consider the
weighted interference level as sn = αsn(in) + (1 − α)sn(out), where α is weight
satisfies 0 < α < 1. Then we have:

sn = α
∑

i∈Un

f(an, ai) + (1 − α)
∑

i∈Jn

f(an, ai). (4)

The weight α is designed to balance the tradeoff between sn(in) and sn(out).
Obviously, the influence of the intra-cluster interference is more serious than the
other one. Therefore, we usually have 0.5 < α < 1.

The individual interference will be minimized if the number of UAVs using
the same channel resource to communicate at the same time decreases. There-
fore, in order to guarantee communication quality, we need to find an optimal
combination of the joint channe-slot selections to minimize the aggregate inter-
ference level of all UAVs in the multi-UAV network, namely:

P1 : a ∈ min
∑

n∈N
sn. (5)

3 Weighted Interference Minimization Game and
Distributed Learning Algorithm

3.1 Weighted Interference Minimization Game Model

We formulate the problem of joint channel-slot selection for multi-UAV net-
work mentioned above as a non-cooperative game, which is denoted as F =
{N , {An}n∈N , {un}n∈N }. In this game, N = {1, 2, ..., N} is a set of UAVs, which
are regarded as the players in this game. An is a set of available actions for
UAV n, and un is the utility function of UAV n. For presentation, the action
space of UAV n is An = {c1, c2, ..., cM} ⊗ {t1, t2, ..., tT }, where “⊗” is the Carte-
sian product. un(an, a−n) is regarded as the utility function of the game, where
an = (cn, tn) is the action of UAV n, and a−n = (c−n, t−n) represents the action
profile of all UAVs excluding UAV n. Since the analysis of the interference men-
tioned before, the utility of any UAV n is influenced by its own action and
the action profile of UAVs in Un and Jn [8]. Therefore, we can define the set
Bn = Un ∪ Jn, and then the utility function of UAV n can be expressed as
un(an, aBn

).
Note that in order to guarantee the communication connectivity and indi-

vidual performance, each UAV expects to experience a lower interference level.
Thus, we design the utility function as follows:

un(an, aBn
) = −sn. (6)

where sn represents the weighted interference level of UAV n which is specified
by (4). Therefore, the ultimate goal of the proposed game is to maximize the
utility function for each UAV, namely:

max
an∈An

un(an, aBn
),∀n ∈ N . (7)
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3.2 Analysis of Nash Equilibrium

Nash equilibrium (NE) [11] is the well-known stable solution in game model.
Exact potential game (EPG) [11] is one of the most attractive potential games
with several perfect features. For a game, it is an EPG if the change in the utility
of an arbitrary player because of its own selection deviation leads to exactly the
same in the potential function. The most important and excellent properties of
EPG are: (1) every EPG has at least one pure-strategy NE, (2) the NE is the
solution that can optimize the problem. We study the existence of NE for the
weighted interference minimization game and the following theorem provides
characterization of the formulated game.

Theorem 1. The weighted interference minimization game F is an EPG with at
least one pure-strategy NE. The solution can minimize the aggregate interference
level of the multi-UAV network.

Proof. Motivated by [8], we can obtain the following potential function:

φ(an, a−n) = − 1
2

∑
n∈N

sn(a1, a2, ...aN )

= −1
2
α

∑

n∈N

∑

i∈Un

f(an, ai)

︸ ︷︷ ︸
φ1(an,a−n)

−1
2
β

∑

n∈N

∑

i∈Jn

f(an, ai)

︸ ︷︷ ︸
φ2(an,a−n)

. (8)

Then, we define In(an, aUn
) as the set of UAVs in Un using the same channel

to communicate at the same time slot with UAV n, i.e.

In(an, aUn
) = {i ∈ Un : ai = an} (9)

where Un is the set of UAVs located in the same cluster with UAV n. Then
the notation |In(an, aUn

)| means the number of UAVs in In(an, aUn
). Similarly,

Hn(an, aJn
) can be defined as follows:

Hn(an, aJn
) = {i ∈ Jn : ai = an}. (10)

Accordingly, the utility function can be given as follows:

un(an, aBn
) = −α |In(an, aUn

)|︸ ︷︷ ︸
u1n(an,aBn )

−β |Hn(an, aJn
)|︸ ︷︷ ︸

u2n(an,aBn )

. (11)

Note that the mathematical forms of the intra-cluster and inter-cluster inter-
ference are similar, for the sake of simplicity, we only give the proof of intra-
cluster interference.

It is assumed that an arbitrary UAV n in the network changes its joint
channel-slot selection from an = (cn, tn) to a∗

n = (c∗
n, t∗n) while others keep their

selections unchanged. The change in utility function u1n(an, aBn
) is Δu1n:

Δu1n = un(a∗
n, aBn

) − u1n(an, aBn
) = α[|In(an, aUn

)| − |In(a∗
n, aUn

)|] . (12)
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Then we discuss the change in φ1(an, a−n) due to the unilateral joint channel-
slot selection change of UAV n is Δφ1:

Δφ1 = 1
2
α{ |In(an, aUn)| − |In(a∗

n, aUn)| + ∑

k∈In(an,aUn )

[|Ik(ak, aUk )| − ∣
∣Ik(ak, a∗

Uk
)
∣
∣]

+
∑

k∈In(a∗
n,aUn )

[|Ik(ak, aUk )| − ∣
∣Ik(ak, a∗

Uk
)
∣
∣]+

∑

k∈I,k �=n

[|Ik(ak, aUk )| − |Ik(a
∗
k, aUk)|]} .

(13)
In (13), we define I = N\{In(an, aUn

) ∪ In(a∗
n, aUn

)}. It means that
In(an, aUn

) and In(a∗
n, aUn

) are excluded from N . Since the selection of UAV n
only affects the UAVs in Un, the following equations hold:

|Ik(ak, aUk
)| −

∣∣Ik(ak, a∗
Uk

)
∣∣ = 1,∀k ∈ In(an, aUn

) (14)

|Ik(ak, aUk
)| −

∣∣Ik(ak, a∗
Uk

)
∣∣ = 1,∀k ∈ In(a∗

n, aUn
) (15)

|Ik(ak, aUk
)| − |Ik(a∗

k, aUk
)| = 0, ∀k ∈ I, k �= n. (16)

The detailed proof of inter-cluster interference is omitted here to avoid unnec-
essary repetition. According to the equations above, we can easily have:

un(a∗
n, aBn

) − un(an, aBn
) = φ(a∗

n, a−n) − φ(an, a−n). (17)

The Eq. (17) satisfies the definition of EPG [12]. Due to the attractive features
of EPG, Theorem 1 is proved. ��

3.3 Distributed Stochastic Learning Automata Based Algorithm

The distributed algorithm without information exchange is needed with the aim
of achieving the NE more practically. We use a distributed SLA based algorithm
which is proposed in [7]. In this algorithm, each UAV selects its channel and
time slot in accordance with its mixed strategy, and then updates its mixed
strategy according to certain rules in (18) which is related to the received random
payoff. The algorithm in detail is given later and the asymptotic behavior of the
algorithm is given and proved in [7] (Theorem 6).

The received payoff function can affect the selections of UAVs and influence
the performance of the learning algorithm. In order to develop comprehensive
random payoff and make full use of the unique feature of the multi-UAV network,
we consider the received random payoff from two aspects. On the one hand,
each UAV wants to mitigate the experienced interference, which motivates us to
develop the random payoff as the decreasing function of the interference level.
On the other hand, when an arbitrary UAV chooses the same channel with the
UAVs in the same cluster at different time slots, it can get reward value.

According to the analysis above, we design the following random payoff
received by UAV n:

rn(k) = D − ε · sn + η
∑

i∈Un

g(an, ai). (20)
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Algorithm 1. The Distributed SLA Based Joint Channel and Time Slot
Selection Algorithm

Initialization: set k = 1 and initialize each UAV’s joint channel and time slot selection
probability vector to qnm(k) = 1

MT
, ∀n ∈ N , m ∈ An.

Loop k = 1, 2, ...
1: Each UAV n randomly selects its action an(k) = (cn(k), tn(k)) in accordance with
its current selection probability vector qn(k).
2: Each UAV uses selected actions to communicate and then receives a random payoff
rn(k) characterized by (22).
3: According to the received random payoff, each UAV follows the following rules to
update their probability vector:

qnm(k + 1) = qnm(k) + σr̃n(k)(1 − qnm(k)), m = an(k)
qnm(k + 1) = qnm(k) − σr̃n(k)qnm(k), m �= an(k)

. (18)

where σ is the learning step size satisfies 0 < σ < 1 and r̃n(k) is the following normalized
received payoff:

r̃n(k) = rn(k)/rmax. (19)

where rmax = D + η · (T − 1) is the interference-free and reward-full payoff, T is the
number of time slots.
End Loop

where D > 0 is a predefined constant so that the received payoff remains positive,
ε and η are weights, sn is the weighted interference level and g(·) is the function
defined as follows:

g(an, ai) =
{

1, cn = ci and tn �= ti
0, others.

. (21)

In (20), the purpose of the proposed weights ε and η are to balance the expe-
rienced interference and received reward. The function g(·) means the number
of UAVs in the same cluster with UAV n which choose the same channel but
the different time slots compared with UAV n. However, the predefined positive
constant D affects the convergence of the algorithm if D is too large. On the
contrary, if D is too small, the received random payoff will be negative. Thus we
modify:

rn(k) = max{rn(k), 0}. (22)

4 Simulation Results and Discussion

We conduct the simulation from three aspects: the influence of weight α, conver-
gence behavior and performance evaluation so as to demonstrate the effectiveness
of the SLA based algorithm and the formulated game model. All UAVs located
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in a 1000m × 500m rectangle region. To distinguish the neighboring UAV clus-
ters, we set the distance as 150m. There are M = 2 channels and T = 2 time
slots. In order to reduce the interference among UAVs and increase the prob-
ability for UAVs located in the same cluster to choose the same channels, we
choose ε = 0.7 and η = 0.3. The learning step size is σ = 0.15 and the predefined
constant D = 1.8.

4.1 The Influence of Weight α

The weight α is designed to measure the importance of intra-cluster interference.
A larger value for the weight α will increase the significance of intra-cluster inter-
ference. Figure 2 shows the variation trend of the two kinds of interference when
α ranges from 0 to 1. There is an upward trend in the inter-cluster interference
when α increases from 0 to 1. That means smaller α leads to lower inter-cluster
interference level. When α = 0, that means we only consider the inter-cluster
interference no matter how high the intra-cluster interference is and vice versa.
We choose α = 0.7 in this simulation.
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Fig. 2. The interference level comparison with different weight α.

4.2 Convergence Behavior

Figure 3 illustrates a considered multi-UAV network topology where the neigh-
boring UAV cluster sets vary from cluster to cluster. For example, the neighbor-
ing UAV cluster set of the 4 clusters are JS1 = {2}, JS2 = {1, 3, 4}, JS3 = {2, 4}
and JS4 = {2, 3} respectively.

The joint channel and slot selection probabilities of UAV cluster S1 is pre-
sented in Fig. 4. At the beginning, UAV 1 and UAV 2 choose actions randomly
with equal probabilities. As the algorithm iterates, they finally converge to dif-
ferent selections. Moreover, Table 1 shows the selections of all UAVs. We can
summarize that each UAV select the same channel but different slots due to the
reward when there are only two UAVs in the same cluster. When the number
of UAV becomes larger, other UAVs select the other channel because the intra-
cluster interference is more serious. The results validate the effectiveness of the
payoff function.
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Fig. 3. An example topology of the multi-UAV network with 10 UAVs and 4 clusters
lcoated in the rectangle region. The small solid black dots represent the UAVs and the
large dashed blue circles mean the UAV clusters. The red dotted lines represent the
existence of interference between the two clusters. (Color figure online)
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Fig. 4. The convergence of the SLA based algorithm of UAV cluster S1

Table 1. Joint channel and slot selections of UAVs

UAV cluster UAV Channel selection Slot selection

S1 No. 1 1 2

No. 2 1 1

S2 No. 3 2 1

No. 4 1 1

No. 5 2 2

S3 No. 6 2 1

No. 7 1 1

No. 8 1 2

S4 No. 9 2 2

No. 10 2 1
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4.3 Performance Evaluation

First, we compare the aggregate interference level in different scenarios. We
consider the multi-UAV network involving 2 channels, 2 slots and the number of
UAVs increasing from 8 to 14 located in each cluster randomly. For comparison,
we develop 4 methods: random selection, best NE, worst NE, and the SLA based
algorithm. The results shown in Fig. 5 can be listed as follows: (i) when the
number of the UAVs becomes larger, the aggregate interference level becomes
higher; (ii) the learning solution is almost the same as the best NE because the
learning solution asymptotically achieves global optimum.
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Fig. 5. The aggregate interference level when varying the number of UAVs. The number
of channels and slots are M = 2 and T = 2 respectively.

Second, we compare the aggregate interference level in different numbers of
available channels. We consider 5 approaches: optimal, random selection, best
NE, worst NE, and the SLA based algorithm. Figure 6 shows the comparison
among the 5 methods in terms of the aggregate interference level by increasing
the channels from 1 to 4. Some significant results can be obtained from the
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Fig. 6. The aggregate interference level when varying the number of channels. The
simulation scenario is given in Fig. 3. The number of slots is T = 2.
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Fig. 6: (i) with the increase of the number of channels, the aggregate interference
level becomes lower; (ii) the best NE can obtain the best performance which is
the same as the optimal one (exhaustive search), and the learning solution is
very close to them; (iii) when the number of channel is 4, it means there are 8
selections for each UAV, the system can fulfill the demand of the UAVs.

5 Conclusion

In this article, we investigated the problem of distributed opportunistic spectrum
access under the consideration of channel-slot selection simultaneously in multi-
UAV network from a game-theoretic perspective, and took into account the
distinctive features of the multi-UAV network. We formulated the joint channel-
slot selection problem as a weighted interference minimization game. We proved
that the weighted interference minimization game is an exact potential game
with, and then used the distributed stochastic learning automata based joint
channel and time slot selection algorithm to achieve the Nash equilibrium. The
algorithm did not need information exchange among UAVs in the network which
was more suitable for dynamic and practical enviroment. The simulation results
showed that the learning solution was almost the same as the optimal solution
which validated the effectiveness of the algorithm.

There are still several potential research issues needed to be studied. For
instance, the ground station can allocate different numbers of time slots to dif-
ferent UAV clusters dynamically due to its load. Moreover, we can consider the
business requirements for different UAVs and the formation of the UAV clusters.
The resaerch of these factors will continue in the future.

References

1. Scherer, J., Rinner, B.: Persistent multi-UAV surveillance with energy and com-
munication constraints. In: 2016 IEEE International Conference on Automation
Science and Engineering (CASE), pp. 1225–1230. IEEE, Piscataway (2016)

2. Bhaskaranand, M., Gibson, JD.: Low complexity video encoding and high complex-
ity decoding for UAV reconnaissance and surveillance. In: 15th IEEE International
Symposium on Multimedia (ISM), pp. 163–170. IEEE Press, New York (2013)

3. Han, J., Chen, Y.: Multiple UAV formations for cooperative source seeking and
contour mapping of a radiative signal field. J. Intell. Robot. Syst. 74(1–2), 323–332
(2014). Springer, Dordrecht

4. Minaeian, S., Liu, J., Son, YJ.: Vision-based target detection and localization via
a team of cooperative UAV and UGVs. IEEE Trans. Syst. Man Cybern. 46(7),
1005–1016 (2016). IEEE, Piscataway

5. Luo, C.B., Nightingale, J., Asemota, E., Grecos, C.: A UAV-cloud system for dis-
aster sensing applications. In: 81st IEEE Vehicular Technology Conference (VTC
Spring), pp. 1–5. IEEE Press, New York (2015)

6. Koulali, S., Sabir, E., Taleb, T., Azizi, M.: A green strategic activity scheduling
for UAV networks: a sub-modular game perspective. IEEE Commun. Mag. 54(5),
58–64 (2016). IEEE, Piscataway



Distributed Joint Channel-Slot Selection for Multi-UAV Networks 557

7. Xu, Y.H., Wang, J.L., Wu, Q.H., Anpalagan, A., Yao, Y.D.: Opportunistic spec-
trum access in unknown dynamic environment: a game-theoretic stochastic learning
solution. IEEE Trans. Wirel. Commun. 11(4), 1380–1391 (2012). IEEE, Piscataway

8. Xu, Y.H., Wang, J.L., Wu, Q.H., Anpalagan, A., Yao, Y.D.: Opportunistic spec-
trum access in cognitive radio networks: global optimization using local interaction
games. IEEE J. Sel. Topics Sig. Process. 6(2), 180–194 (2012). IEEE, Piscataway

9. Wu, Q.H., Xu, Y.H., Wang, J.L., Shen, L., Zheng, J.C., Anpalagan, A.: Distributed
channel selection in time-varying radio environment: interference mitigation game
with uncoupled stochastic learning. IEEE Trans. Veh. Technol. 62(9), 4524–4538
(2013). IEEE, Piscataway

10. Wang, H.C., Wang, J.L., Wang, C.C., Wang, L., Ren, J., Cheng, F.Y.: Joint fre-
quency and time resource partitioning for OFDM-based small cell networks. Wirel.
Netw. https://doi.org/10.1007/s11276-016-1429-2. (Published Online)

11. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14, 124–143
(1996)

https://doi.org/10.1007/s11276-016-1429-2

	Distributed Joint Channel-Slot Selection for Multi-UAV Networks: A Game-Theoretic Learning Approach
	1 Introduction
	2 System Model and Problem Formulation
	2.1 System Model
	2.2 Problem Formulation

	3 Weighted Interference Minimization Game and Distributed Learning Algorithm
	3.1 Weighted Interference Minimization Game Model
	3.2 Analysis of Nash Equilibrium
	3.3 Distributed Stochastic Learning Automata Based Algorithm

	4 Simulation Results and Discussion
	4.1 The Influence of Weight 
	4.2 Convergence Behavior
	4.3 Performance Evaluation

	5 Conclusion
	References


