
Realization of Traffic Video Surveillance
on DM3730 Chip

Xin Zhang(&) and Hang Dong

College of Electronics and Information Engineering,
Tongji University, Dianxin Building, Jiading District, Shanghai, China

{mic_zhangxin,dh}@tongji.edu.cn

Abstract. A general method for traffic video surveillance task involves fore-
ground detecting and moving objects’ tracking. The Gaussian mixture model is
generally used in detecting foreground and the Kalman filter is used in
multi-objects tracking. This paper has implemented a multi-objects tracking
system using DM3730 development board as the hardware platform, which is
powerful at image processing and analysis. This paper will adopt an Open
Computer Vision library (OpenCV) to efficiently implement the overall system.
The OpenCV library with a large amount of optimized algorithms in computer
vision and machine learning will facilitate the realization of the system. The
testing results demonstrate the effectiveness of the system through tracking of
vehicles.

Keywords: Multi-objects tracking � DM3730 � OpenCV

1 Introduction

With the urgent demand of constructing a smart city and intelligent transportation, the
techniques of traffic video surveillance have been significantly developed and widely
used. Especially, we require a sound and excellent digital video surveillance system in
the areas where traffic profile is heavy and complicated [1].

An effective approach was proposed for real-time tracking in [2]. The Gaussian
mixture model (GMM) was used to distinguish the moving objects. Then the Kalman
filter was used to keep track of moving objects in image sequences [2, 3]. This paper
has realized the tracking scheme in hardware and can follow and keep track of the
moving objects in traffic video correctly.

Initially, a sequence of images is obtained using V4L2 to drive camera to capture
images [4]. V4L2 is the application programming interface (API) for video capturing in
Linux system which offers unified interfaces for application. Then, this paper has
applied GMM in detecting foreground of image sequences [2] and Kalman filter in
keeping track of each moving object [6].

The rest of the paper will be organized as follows: In Sect. 2, the hardware platform
based on embedded Linux system, where the overall scheme was implemented, will be
discussed firstly. In Sect. 3, the flowchart of the scheme proposed in [2] will be
explicitly explained. In Sect. 4, the testing results of the realized system will be shown.
In Sect. 5, we will conclude the important procedures of the system.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
X. Gu et al. (Eds.): MLICOM 2017, Part II, LNICST 227, pp. 402–409, 2018.
https://doi.org/10.1007/978-3-319-73447-7_44



2 Hardware Platform Based on Embedded Linux System

2.1 Hardware Platform

In order to solve the real-time tracking problem for multi-objects, we need a set of
processing and controlling system with high speed performance, low power con-
sumption, high speed data I/O, large storage capability and high reliability. The pro-
grammable ARM + DSP engine allows multiple signal processing tasks and its video
processor is suitable for video processing tasks [4]. Therefore, this paper will use the
DM3730 circuit as the hardware platform to implement the tracking scheme.

The Application Processor module (AP module) of DM3730 is a powerful circuit.
AP module integrates an ARM Cortex A8 core, a powerful TI C64x + DSP core, a
POWERVR SGX graphic accelerator, and a TI TPS65950. The AP Module functional
block diagram is shown in Fig. 1 [4].

2.2 Cross-Compiling for OpenCV Library

OpenCV is an open source computer vision and machine learning software library with
more than 2500 optimized algorithms [6]. Since the OpenCV can be run and trans-
planted on different platforms, this paper will use OpenCV library to implement the
tracking scheme. Therefore, we need to cross-compile the OpenCV Library and
transplant the compiled files to the kernel of DM3730 so that the optimized algorithms
in computer vision can work on the hardware system.

Fig. 1. AP module functional block diagram [4].

Realization of Traffic Video Surveillance on DM3730 Chip 403



3 The Implementation Scheme

The implementation scheme of the multi-objects detecting and tracking system
involves following steps: video capturing, objects detecting, and multi-objects tracking.
Initially, the system will capture image sequences using V4L2. Afterwards, GMM will
be adopted to detect moving objects. Ultimately, the Kalman filter will be used to keep
track of individual moving object. The complete diagram of the implementation
scheme is shown in Fig. 2.

3.1 Video Capturing Based on V4L2

As mentioned above, V4L2 is an API for video capturing in Linux system, offering
explicit model and unified interface for developing camera drivers. Despite the dif-
ferences among camera devices, the application program can use the same API func-
tion. The frequently used API functions of V4L2 are shown in Table 1.

The flowchart of video capturing is shown in Fig. 3.
The principal steps of video capturing are as follows:

(1) Open the camera device and get file descriptor of device. The application can open
the video device under blocking mode or non-blocking mode.

(2) Check the functions of the camera device such as video capturing and stream
collecting.

(3) Set format of image sequences. The application can set image format manually as
MJPEG format, BMP format or YUV format.

(4) Reserve buffer area and use mmap function to map memory to the user space.
(5) Start capturing video and wait for the driver to put images to the user space so as

to capture images successively.
(6) Stop capturing video and shut the device.

Video
Capturing

Objects
Detecting

Multi-Objects
Tracking

Input
Video Output Tracks

Fig. 2. Implementation scheme diagram.

Table 1. The frequently used API functions of V4L2.

Operating functions Function description

open() Open a V4L2 device
close() Close a V4L2 device
ioctl() Set parameters for device
mmap() Map kernel space to user space
munmap() Cancel device memory mapping
read() Read data from V4L2 device
write() Write data into V4L2 device

404 X. Zhang and H. Dong



3.2 Objects Detecting Using GMM

The objects detecting module has been implemented using GMM to model each
individual pixel. The parameters of background Gaussian distributions will be updated
to improve the adaptability of the background changes. The flowchart of objects
detecting algorithm is shown in Fig. 4.

The objects detecting module will model individual pixel of each image with K
Gaussian distributions [2]. Then the difference between the pixel and the mean value
will be checked if it is within 2.5 times of standard deviation in order to determine
whether the pixel belongs to background or not. Afterwards, the weights of all
Gaussian distributions will be updated respectively. If none of the Gaussian distribu-
tions match with the pixel value, the distribution with least probability will be sub-
stituted by current pixel value.

End

Start

Open the camera device file

Check functions of the device

Set format of image sequences

Reserve buffer area and map 
memory to user space

Start capturing video 
successively

Stop capturing video and shut 
the device

Fig. 3. The flowchart of video capturing.

Realization of Traffic Video Surveillance on DM3730 Chip 405



3.3 Multi-objects Tracking Using Kalman Filter

After successfully extracting foreground and updating background using GMM, we
need to keep track of moving objects in image sequences. Once moving objects
detected, a Kalman Filter will be assigned to keep track of moving objects.
Multi-objects tracking scheme will be implemented using online multi-objects tracking
method for maintaining sets of Kalman filters [2]. The flowchart of the implementation
scheme is shown in Fig. 5.

The location of each moving object will be recorded and updated in a vector only if
the maximum SIFT feature is greater than threshold value [5]. The moving object will
be compared with five predicted locations. If none of the locations matches with the
threshold value, it means that the moving object has disappeared.

Image Sequences

Model the image pixels and 
calculate differences between 
pixel value and mean value

Determine whether 
image matches to 

background?

Extract background pixels

Y

Extract moving 
pixelsN

Update the parameters of 
matched Gaussian Models and 
unmatched Models respectively

Check whether it 
approaches the end of 

sequence or not?

N

Start

End

Y

Fig. 4. The flowchart of objects detecting.

406 X. Zhang and H. Dong



4 Testing Results

After applying GMM for image sequences in Sect. 3, moving pixels have been
detected from video clips. In this section, we will display the hardware platform in
Fig. 6 and some testing results in real scenes such as crossroads in Figs. 7 and 8.

There are four tracks of vehicles in the video shown in Fig. 7 and two tracks of
pedestrians in Fig. 8.

These four pictures show the tracks existing in video clips. Figure 7(a) shows that a
vehicle is driving vertically first and then turning left. Figure 7(b) shows that a vehicle

Image sequences in two values : moving pixels in 
255 value and background pixels in 0 value

Assign a kalman filter to each newly detected 
object to keep track of its location

Predict five possible locations of an object based 
on the previous centroid of the Kalman Filter

Adopt SIFT matching method to find out the 
most matched location to the detected object

Check whether most matched value 
is greater than threshold value?

Calculate the centroid of each object in a frame

Update locations of each object 

Y

Check whether this is the last frame 
or not?

N

End

Y

Start

N

Fig. 5. The flowchart of multi-objects tracking.

Realization of Traffic Video Surveillance on DM3730 Chip 407



is making a turnaround. Figure 7(c) shows that a vehicle is turning right. Figure 7(d)
shows that a vehicle changes its lane to the rightmost one preparing to turn right.

The two pictures in Fig. 8 show the tracks of pedestrians in video clips. Figure 8(a)
shows that a person is walking across the zebra crossing and Fig. 8(b) shows that a
person is walking along the road and turns right.

Fig. 6. The hardware platform.

Fig. 7. Tracks of individual vehicle.

408 X. Zhang and H. Dong



5 Conclusions

We have used DM3730 as hardware platform and OpenCV to implement the real-time
tracking method proposed in [2]. The procedures of using V4L2 to drive camera
capture image sequence, GMM to extract foreground, and Kalman Filter to keep track
of moving objects have been explicitly explained. The multi-objects tracking results are
presented using the realized system with DM3730 hardware platform.

References

1. Wang, X., Ma, X., Grimson, W.E.L.: Unsupervised activity perception in crowded and
complicated scenes using hierarchical bayesian models. TPAMI 31(3), 539–555 (2009)

2. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking.
In: Proceedings of IEEE CVPR, pp. 246–252, June 1999

3. Faragher, R.: Understanding the basis of the Kalman filter via a simple and intuitive
derivation. IEEE Sig. Process. Mag. 29(5), 128–132 (2012)

4. Varfolomieiev, A., Lysenko, O.: An improved algorithm of median flow for visual object
tracking and its implementation on TI OMAP. In: Proceedings of EDERC, pp. 261–265,
September 2012

5. Sakai, Y., Oda, T., Ikeda, M., Barolli, L.: An object tracking system based on SIFT and SURF
feature extraction methods. In: INWC, pp. 561–565, September 2015

6. Li, D., Liang, B., Zhang, W.: Real-time moving vehicle detection, tracking, and counting
system implemented with OpenCV. In: Proceedings of IEEE ICIST, pp. 631–634, April 2014

Fig. 8. Motions of individual pedestrian.

Realization of Traffic Video Surveillance on DM3730 Chip 409


	Realization of Traffic Video Surveillance on DM3730 Chip
	Abstract
	1 Introduction
	2 Hardware Platform Based on Embedded Linux System
	2.1 Hardware Platform
	2.2 Cross-Compiling for OpenCV Library

	3 The Implementation Scheme
	3.1 Video Capturing Based on V4L2
	3.2 Objects Detecting Using GMM
	3.3 Multi-objects Tracking Using Kalman Filter

	4 Testing Results
	5 Conclusions
	References


