Implementation of Video Abstract Algorithm
Based on CUDA

Hui Li®9, Zhigang Gai, Enxiao Liu, Shousheng Liu, Yingying Gai,
Lin Cao, and Heng Li

Institute of Oceanographic Instrumentation, Shandong Academy of Science,
Qingdao 266001, China
lihuihuidou@l63. com

Abstract. The dynamic video abstract is an important part of video content
analysis. Firstly, the objective of motion is analyzed, and the objective of the
movement is extracted. Then, the moving trajectory of each target is analyzed,
and different targets are spliced into a common background scene, and they are
combined in some way. The algorithm uses Gaussian mixture model and par-
ticle filter to do a large number of calculations to achieve the background
modeling and the detection of moving object. With the increase of image res-
olution, the computing increased significantly. To improve the real-time per-
formance of the algorithm, a video abstract algorithm based on CUDA is
proposed in this paper. Through the data analysis and parallel mining of the
algorithm, time-consuming modules of the calculation, such as Histogram
equalization, Gaussian mixture model, particle filter, were implemented in GPU
by using massively parallel processing threads to improve the efficiency. The
experimental results show that the algorithm can improve the calculation speed
significantly in NVIDIA Tesla K20 and CUDA?7.5.

Keywords: Video abstract - Gaussian mixture model - Particle filter
GPU - CUDA - Parallel computing

1 Introduction

The video abstract is a technique that generalizes the main content of the original video.
It is also called video synthesis. With the increasing demand for video data processing
and the increasing amount of video data, we need to set up a digest for a long video to
quickly browse to make better use of it. By using the video abstract technology, we can
not only use words in our content-based video retrieval, but also make full use of audio
and video information [1]. Video abstract technology solves the problem that how to
present video data effectively and fast access. It uses video content analysis to reduce
the video storage, classification and indexing, and improve the efficiency, availability
and accessibility of the video. It is the development of video analysis technology that
based on content.

The generation of the video abstract uses the Gaussian mixture model and particle
filtering to perform a large number of operations to achieve the background modeling
and motion target detection tracking. Because of the large computational complexity

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
X. Gu et al. (Eds.): MLICOM 2017, Part II, LNICST 227, pp. 391-401, 2018.
https://doi.org/10.1007/978-3-319-73447-7_43

392 H. Li et al.

and long processing time of Histogram equalization, such as Gauss mixture model and
particle filter, it is difficult to apply in real-time video processing with higher real-time
requirements [2]. Therefore, the processing time of the algorithm must be effectively
reduced to meet more real-time applications.

In recent years, GPU (Graphics Processing Unit) has been applied to large-scale
parallel computing and floating point calculation, and its multi-thread and multi-core
processors are especially suitable for data parallel computing. CUDA architecture, that
uses SIMT (single-instruction-thread, multi-thread) model, is a software platform that
can be used to implement fine-grained parallelism. Developing CUDA programs
becomes more flexible and efficient because of their easy programmability when
accelerating image processing in program-level parallelism. This paper presents a video
abstract algorithm based on GPU CUDA, which exploits a large number of parallel
threads and heterogeneous memory hierarchy of GPU to improve the execution
efficiency.

2 Gauss Mixture Model and Particle Filter

2.1 Gauss Mixture Model

Gaussian mixture Model is a classical adaptive background extraction method pre-
sented by Stauffer et al. [3]. It is a kind of method based on background modeling, and
it constructs each pixel according to the distribution of each pixel in the time domain of
the color distribution model in the video, in order to reach the purpose of background
modeling. The Gaussian mixture Model is a weighted sum of finite Gauss functions,
which can describe the multimodal state of pixels, and it is suitable for accurate
modeling of complex backgrounds such as light gradients and tree swaying.

By looking for a random sample spread in state space to approximate the proba-
bility density function, replace the integral operation with the sample mean, and obtains
the state minimum variance distribution. The core idea is that through the random state
particles extracted from the posterior probability to express the distribution. It is a kind
of sequential importance sampling method. It is often used background subtraction
method to extract the moving object when the camera fixed. Subtract the current image
from background image that previously obtained, if the pixel exceeds a certain
threshold, the pixel is identified as the target region; otherwise that is the background
area.

The estimation algorithm of single Gauss background model is suitable for indoor
environment and outdoor environment which is not very complicated.

The first step is initializing the background image. The average gray value y, of
each pixel and the variance 67 of the pixel gradation in the video sequence image
f(x,y) are calculated for a period of time. The initial background image of By with
Gauss distribution is composed of y, and a%. As shown in formulas (1) (2).

T=1

hole3) =2 3 (%) (1)
i=0

Implementation of Video Abstract Algorithm Based on CUDA 393

T=1
2

) =7 3 [063) — ol)P)
i=0

The second step is to update the background image. If the scene changes, the
background model needs to respond to these changes. The algorithm updates the
background model by using the real-time information provided by the video sequence,
where F,(x,y) represents the real-time image at time t, B,_;(x,y) represents the
background image at time t — 1, as shown in formula (3).

Bi(x,y) = (1= p) Bi_1(x,y) + p- Fi(x,y) (3)

The background update rate p is a constant that reflects the update speed of the
current image to the background. Since the influence of the moving target on the
background is not taken into account, the pixel on the moving target is also involved in
the updating of the background image, resulting in an error in the updated background
and the actual background. Thus, Koller et al. improved the algorithm by updating
pixels that were labeled as background areas. As shown in formula (4), respectively
indicate that B;(x,y) is judged as background or foreground.

_J (1 =p)-Bii(x,y) +p-Filx,y)
Bixy) = { Bi1(x,y))

In video surveillance systems, surveillance cameras are generally fixed. If the
background is completely stationary, each pixel in the background image can be
described by a Gauss model [4]. But in reality, the background is not absolute static,
such as the branches swing, or a pixel in the background image at a certain moment
may be the sky, may be leaves, may also be branches; each state of the color value of
the pixel is different. Therefore, a Gauss model can not reflect the actual background.
So, the Gauss mixture distribution is used to describe the background model. The
Gauss distribution, which is used to describe the color of each pixel, is K, and K is
determined by the computational power and the available memory of the computer, and
it generally takes between three and five. The distribution of the currently observed
pixel values is as formula (5) shows.

k
P(Xi) =Y @i n(Xi, i Zis) (5)
i=1

w;, is an estimate of the weight of a Gaussian model at time t, ;, is the mean of a
Gaussian model at time t, and X;; is the covariance matrix of a Gaussian model at time
t. n is a Gaussian probability density function as shown in formula (6).

1Koy 1, T) = —— 408" 05) (6)
(2m)2|Zf

394 H. Li et al.

The covariance matrix is assumed to be as follows.
S = o (7)
At time t, the weight wy, of the K distribution is updated as follows.
Oy = (1 —) wp—1 + oc(MkJ) (8)

In the formula, o is the learning rate, the matching model M, is 1, and the
remaining mismatch model is 0. For the mismatched model, the model parameters are
unchanged, and the matching parameters in the matched model are updated as follows.

= (1= p)p_y + pXi)
Gtz =(1- P)O'tz—l +p(X; — M;)T(Xt — 1) (10)
p = an(X:|wy, ox) (11)

Each Gaussian distribution is arranged in order of priority, the former B as the
background model, and B is defined as follows.

b
B = arg miny, (Z g > T) (12)

k=1

T is a pre-defined threshold, which can actually reflect the minimum proportion of
the data in the background to the total data.

2.2 Particle Filter

In this paper, we use the sequential importance particle filter algorithm, which uses the
weighted sum of a series of random samples to represent the required posterior
probability density, obtains the estimated value of the state, realizes the tracking of the
moving target and obtains the target trajectory [5].

In the Monte Carlo simulation method which based on importance sampling, it is
necessary to recalculate the importance weight of the whole state sequence by esti-
mating the posterior filtering probability and using all the observed data. Sequential
importance sampling is the basis of particle filtering, which applies the sequential
analysis method in statistics to the Monte Carlo method, so as to realize the recursive
estimation of the probability density of the posterior filter [6]. Assume that the
importance probability density function g(xo.|yi1«) can be decomposed by the fol-
lowing formula.

q(xox|y1xk) = q(Xox—1]y1:k—1)q Xk |Xo:x—1, Yi:x) (13)

Set the system state is a Markov process, and individual observations are inde-
pendent in a given system state, there are,

Implementation of Video Abstract Algorithm Based on CUDA 395

k

p(xox) = p(xo) [[Plxili1) (14)

i=1

k

pOialxe) = [T pGils) (15)

i=1

The recursive form of the posterior probability density function can be expressed as
the following formula.

p(xox| Vi) = Pklxox, Yi—1)p(Xox| Ye—1)
POk|Yi-1)
_ POk|X0:k, Vi 1)P (kX011 Yi—1)p(Xox—1|Yi-1) (16)
POkl Yi-1)
_ PORP)P Ol 1)p (ox—1]Ye1)
pOxlYe-1)

)

The recursive form of particle weights w,(: can be expressed as formula (17).

@ P (xg:)k | Yk) p (yk \%@)P (x;(f) b)P (x((),:)k—l Y1)
a(xialve) (o) a (i Ve)
o P (yk by)p (XY) ! 1)
R RO
‘1<xk IXosk—1 Yk)

In general, it is necessary to normalize the weight of the particle, as formula (18).

(17)

w,(j) S : (18)

The sequential importance sampling algorithm generates the sampled particles from
the importance probability density function, and obtains the corresponding weights with
the arrival of the measured values. Finally, the posterior filtering probability density is
described in the form of particle weighting sum, and then get the state estimate.

3 CUDA Architecture

CUDA (Compute Unified Device Architecture) is a general parallel computing archi-
tecture introduced by NVIDIA [7], and the architecture can dramatically improve
computational performance by using GPU.

396 H. Li et al.

There are many SMs (Streaming Multiprocessor) in a GPU in the hardware
architecture of GPU CUDA, these similar to the CPU core, and a SM is equipped with
a number of SPs (Streaming Processor). SP, namely CUDA core, is the basic pro-
cessing unit of CUDA, and the specific instructions and tasks are handled in the
SP. GPU parallel computing, that is, the parallel processing of multiple SP.

GPU threads are organized in a grid and each grid contains a number of thread
blocks [8]. The thread is the basic execution unit in CUDA, a number of threads forms
a thread block and the thread block can be a one dimensional, two-dimensional or
three-dimensional structure. Many threads in the same thread block have the same
instruction address, which not only can execute in parallel, but also can realize the
communication among the blocks through the shared memory and the barrier.
The CUDA memory access model is shown in Fig. 1.

CUDA code applies to both the host processor (CPU), but also applies for the
device processor (GPU) [9]. The host processor is responsible for deriving a
multi-thread task (CUDA called a kernel program) that runs on a GPU device pro-
cessor. When using CUDA programming, the program is divided into two parts, host
side and device side. Host side is executed on the CPU part, and it is the serial code.
Device side is executed on the GPU part, and it is the parallel code. Program in device
side is also called “kernel”, and the grid is composed of all threads generated by kernel
[10]. In CUDA, host and device have different memory spaces. When these tasks have

(Device)Grid
Block (0, 0) Block (1, 0)
Shared Memory Shared Memory
2 2 '} '}
Register Register Register Register
'} '} A '}
A A
Thread (0. 0) || Thread(1.0) Thread (0. 0) Thread (1. 0)
A A A A

v v v \4
Global
Host Memory

Constant
Memory

Fig. 1. CUDA memory access model

Implementation of Video Abstract Algorithm Based on CUDA 397

enough parallelism, with the increase of SM in GPU, the computing speed of the
program will be increased. Figure 2 shows the CUDA thread model.

Host (CPU) Device (GPU)
serial
code Grid 1
Kernell - Block Block Block
LY C1 0,0 1,0) (2,0)
Block |/] Block [\ | Block
serial 0,1 / LD iy @D
code L
L/ Grid 2
Kernel2
LM M
v '
Block (1, 1) J
Thread| Thread| Thread| Thread| Thread| |
0,00 1,0) | (2,0) | (3,0)| (4,0

Thread|Thread| Thread|Thread|Thread
0D] @] ED|ED| @

Thread| Thread| Thread|Thread| Thread
0,2 | (1,2) | 2.2) | (3,2) | (4,2)

Fig. 2. CUDA program model

4 Realization of Video Abstract Based on CUDA

The R, G and B color components of the image are calculated respectively by the video
abstract algorithm when processing the input image. That is, data calculation is inde-
pendent of each other, so it can take full advantage of SIMT characteristics of CUDA
for high-performance parallel processing.

The program based on the CUDA architecture is executed in collaboration in the
host side and the device side. In the CUDA programming of MSR algorithm, it should
increase the data parallel as much as possible, and reduce the data copy between the
host side and the device side, to maximize the advantages of GPU computing. In this
paper, the host side is used to realize the reading of the input image, the memory
allocation and recovery, and the data transmission between the host and the device. The
rest of the implementation process of the algorithm are executed at the device side,
mainly Gauss mixture model, erosion, dilation, histogram and particle filter.

398 H. Li et al.

In order to achieve higher efficiency of the instruction stream, the algorithm allo-
cates a processing thread for each pixel and uses the shared memory to store convo-
lution operator. Since the size of the CUDA warp is 32, so the number of threads in the
thread block is preferably a multiple of 32 to take full advantage of the computing
power of each thread.

In this paper, the algorithm is divided according to the size of 64 threads of each
thread block according to the two-dimensional allocation method:

dim3 blockSize, gridSize
blockSize.x = 8
blockSize.y = 8.

When the size and dimensions of the thread block are determined, the number of
thread blocks in the thread grid can be determined according to the size of the image. In
order to avoid the error caused by the processing of the boundary of the image, the
determination of the dimensions of the thread grid in the X and Y directions of the
algorithm is determined by the following method:

Host (CPU) Device (GPU)

‘Read RGB of input video frame‘

% Global Memory
Allocate CPU and GPU

memory, and copy data
from host to device

v
‘Ca]l for kernelfuction } #kkernelfGaussMixtureModel
v
‘Call for kernelfuction} >}kerne17dilation
v
‘Call for kernelfuction} %} kernel erosion
v
‘Call for kernelfuction} “kernelihistgram‘

v

Copy processing result
from device to host

v

Save processing result‘

end

Fig. 3. Flowchart of video abstract algorithm based on CUDA

Implementation of Video Abstract Algorithm Based on CUDA 399

gridSize.x = (ImageWidth + blockSize.x — 1)/blockSize.x;
gridSize.y = (ImageHeight + blockSize.y — 1)/blockSize.y;

In the case of the histogram equalization, the thread grid in the X, Y, Z direction of
the dimension is determined by the following method,

gridSize.x = (Hx[0] * 2 * 2 + blockSize.x — 1)/blockSize.x
gridSize.y = (Hy[0] * 2 * 2 + blockSize.y — 1)/blockSize.y
gridSize.z = N.

Hx and Hy are the size of the filter window, and N is the number of particles.
The execution process of the whole algorithm is shown in Fig. 3.

5 Experimental Simulations and Analysis

This algorithm uses NVIDIA Tesla K20 and CUDA?7.5 for performance testing, in
which the CPU of 2.66 GHz, 2.67 GHz Core Duo. The NVIDIA Tesla K20 has 2496
SPs, and the processing power of single precision is 3524GFLOPS. In this experiment,
video frame image with a resolution of 640 x 360 was selected for performance
testing. Finally, the speed of the algorithm in CPU and GPU are compared.

In the CPU algorithm, the basic time that detects a new target of a frame by the first
is 180 ms, the filtering time is n times of 15 ms, and the n is the number of filtering.
Background modeling frames and tracking multiple frames of detected targets are about
60 ms and 100 ms. For a total of 60 frames, for example, the average frame time is
350 ms, and the core processing time is 150 ms.

In the CUDA algorithm, the basic time that detects a new target of a frame by the
first is 80 ms, the filtering time is n times of 15 ms, and the n is the number of filtering.
The marker area pixel mu is significantly optimized, the time drops from 25 ms to
1 ms, and the time of the target contour rectangle is extracted from 90 ms to 7 ms.
Background modeling frames and tracking multiple frames of detected targets are
stabilized to 40 ms and 80 ms. Take a total of 60 frames, for example, the average
frame time is 300 ms, and the core processing time is 100 ms.

In the CPU algorithm, statistical histogram algorithm need N dynamic particle
multiple iterations. Each iteration takes 20 ms, and each particle filter needs multiple
iterations, so it is an obvious bottleneck. After porting the algorithm to GPU, the
iteration time fell from 20 ms to 5 ms, and the performance increased by four times.

Figure 4(a) is the background image, Fig. 4(b)(c) is two different goals at the
different time in the same scene, Fig. 4(d) sets the two goals in the same frame to form
a video abstract.

The experimental results show that the total calculation speed of the video abstract
algorithm based on CUDA proposed in this paper is obviously improved compared
with the CPU implementation. And the result of the target detection is relatively
accurate, the target can be tracked continuously, the formation of the abstract video can
effectively save the original video information.

400 H. Li et al.

(©) origin video . . (d)ideo abstract

Fig. 4. Video abstract result

6 Conclusions

The significant characteristic of video abstract is browsing all moving targets in the
video for several hours in a few minutes. Browse video abstract can greatly shorten the
time to view the original video, so it can improve the efficiency and accuracy of
artificial recognition. However, the complexity of computing has seriously affected in
its actual applicability, especially for high-definition video. Based on the CUDA
architecture, this paper proposes a video abstract algorithm based on CUDA. The
experimental results show that the processing speed is significantly higher than that of
the CPU algorithm, and the real-time performance of the algorithm is better.

Acknowledgments. This work was supported by the Natural Science Foundation of Shandong
Province, Grant No. ZR2015YL020.

References

1. Wang, J., Jiang, X., Sun, T.: Summary of video abstract technology. J. Image Graph. 19(12),
1685-1695 (2014)

2. Tian, H., Ding, S., Yu, C., Zhou, L.: Research on video abstract technology based on target
detection and tracking. Comput. Sci. 43(11), 297-312 (2016)

3. Hua, Y., Liu, W.: Improved Gauss mixture model for moving target detection. J. Comput.
Appl. 34(2), 580-584 (2014)

4. Li, B., Yang, G.: Adaptive foreground extraction of Gauss mixture model. J. Image Graph.
18(12), 1620-1627 (2013)

10.

Implementation of Video Abstract Algorithm Based on CUDA 401

. Li, T., Fan, H., Sun, S.: Particle filter theory and method and its application in multi-target

tracking. Acta Autom. Sin. 41(12), 1981-2002 (2015)

. Wang, F., Lu, M., Zhao, Q.: Particle filter algorithm. Chin. J. Comput. 37(8), 1679-1694

(2014)

. CUDA parallel computing platform [EB/OL]. http://www.nvidia.cn/object/cuda-cn.html
. Cook, S.: CUDA parallel programming: guide for GPU programming. In: Su, T., Li, D.

(eds.) Translated Version.1, pp. 191-200. Mechanical Industry Press, Beijing (2014)

Jian, L., Wang, C., Liu, Y., et al.: Parallel data mining techniques on Graphics Processing
Unit with Compute Unified Device Architecture (CUDA). J. Supercomput. 64(3), 942-967
(2013)

Yang, N.Z., Zhu, Y., Pu, Y.: Parallel image processing based on CUDA. In: 2008
International Conference on Computer Science and Software Engineering, ICCSSE 2008.
IEEE Computer Society, California, pp. 198-201 (2008)

http://www.nvidia.cn/object/cuda-cn.html

	Implementation of Video Abstract Algorithm Based on CUDA
	Abstract
	1 Introduction
	2 Gauss Mixture Model and Particle Filter
	2.1 Gauss Mixture Model
	2.2 Particle Filter

	3 CUDA Architecture
	4 Realization of Video Abstract Based on CUDA
	5 Experimental Simulations and Analysis
	6 Conclusions
	Acknowledgments
	References

