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Abstract. This paper considers the coherent integration problem of detecting
weak maneuvering targets in passive radar using digital television terrestrial
broadcasting (DTTB) signals. By dividing the continuous DTTB echoes into
multiple segments, the generalized Radon-Fourier transform (GRFT) which was
proposed to realize coherent integration of maneuvering targets for pulse
Doppler radar can be utilized in DTTB-based passive radar. The GRFT can
obtain ideal coherent integration gain but suffers a heavy computational burden.
In this paper, a fast implementation algorithm of GRFT using the modified wind
driven optimization (MWDO) is proposed. Compared with the existing particle
swarm optimization (PSO) method, the proposed method can achieve better
detection performance with a similar computational cost in DTTB-based passive
radar. Several numerical experiments are also provided to demonstrate the
effectiveness of the proposed method.
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1 Introduction

Passive bistatic radar often uses non-cooperative civil radiation sources to detect and
locate targets. Compared with the traditional monostatic radar, passive radar has several
attractive advantages such as stronger survivability, better anti-jamming ability and
potential anti-stealth capacity [1]. Among various illuminators, digital television ter-
restrial broadcasting (DTTB) signals are better choices for passive radar due to the high
power, wide coverage, and higher range resolution.

It is known that pulses integration especially coherent integration can greatly
improve the radar detection performance. The traditional coherent integration method
for DTTB-based passive radar is to compute the cross-ambiguity function (CAF) [2].
However, the computational burden of CAF is heavy and the integration performance
via CAF will be greatly influenced by the range migration (RM) and the Doppler
frequency migration (DFM) which are caused by the maneuvering motions of targets
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[3]. To reduce the computational complexity, a signal segmentation method [1] can be
utilized. After segmentation, the continuous DTTB signal have equivalent fast time and
slow time, which is similar to pulse signal in pulse Doppler radar.

In pulse Doppler radar, the commonly used integration method is moving target
detection (MTD) [4], but it will become invalid when RM occurs. Regarding this,
Zhang and Zeng [5] have proposed to perform keystone transform (KT) to deal with
RM before MTD. However, traditional KT can only correct the first-order RM caused
by the velocity of targets. Li et al. [6, 7] have proposed a fast coherent integration
method based on adjacent cross correlation function (ACCF) for maneuvering targets.
This method can remove the RM and reduce the order of DFM and is free of
parameters searching. Unfortunately, ACCF cannot be applied to DTTB-based passive
radar because of the pseudo random characteristics of DTTB signals. In recent years,
generalized Radon-Fourier transform (GRFT) [8] has been proposed to achieve ideal
coherent integration of maneuvering targets via jointly searching in parameter space,
but it suffers a heavy computational burden. Through converting the realization of
GRFT into an optimization problem, Qian et al. [9] proposed an improved particle
swarm optimization (PSO) method to fast implement GRFT.

Although PSO greatly reduces the computational burden of GRFT, it suffers an
apparent detection performance loss. For the purpose of improving the detection per-
formance, this paper proposes a fast implementation algorithm of GRFT based on the
modified wind driven optimization (MWDO). Compared with PSO, MWDO can
achieve better detection performance with similar computational cost in DTTB-based
passive radar.

2 Signal Model and Signal Segmentation Method

2.1 Signal Model of Passive Radar

Figure 1 depicts the bistatic passive radar geometry. The baseline runs from the
transmitter Tx to the passive radar receiver Rx, and they are separated by the base-
length L. Suppose that the target is located at O at the initial time and moves to O’ at
time t. The distance between the target and the transmitter at the initial time and time
t is denoted by RT0 and RT tð Þ respectively while the distance between the target and the
receiver at the initial time and time t is denoted by Rr0 and Rr tð Þ respectively. b is the
bistatic angle at the initial time and u denotes the movement direction of the target.
The DTTB source transmits the signal s tð Þ. The passive radar receiver collects both a
reference signal x tð Þ via a line-of-sight (LOS) path direct from the illuminator, and a
surveillance signal sr tð Þ reflected via the target of interest. sr tð Þ has a time delay
s ¼ R tð Þ=c refers to x tð Þ, where

R tð Þ ¼ RT tð ÞþRr tð Þ � L ð1Þ

The received radar echo can be denoted as
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sr tð Þ ¼ Aes t � R tð Þ=cð Þ exp �j2pfcR tð Þ=cð Þ ð2Þ

where c is the speed of light, Ae is the amplitude, and fc is the carrier frequency.
Assume that the target moving from O to O’ is maneuvering. Neglecting the high

order components, the instantaneous range Rm tð Þ between O and O’ can be denoted as

Rm tð Þ ¼ v0tþ 1
2
a0t

2 þ 1
6
g0t

3 ð3Þ

where v0, a0 and g0 denotes respectively the velocity, acceleration and jerk of the
target. From the geometric relationship of Fig. 1, we can obtain that

RT tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
T0 þR2

m tð Þ � 2RT0Rm tð Þ cos bþuð Þ
q

ð4Þ

Rr tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
r0 þR2

m tð Þ � 2Rr0Rm tð Þ cos uð Þ
q

ð5Þ

Then, inserting (4) and (5) into (1) and expanding (1) into Taylor series at t ¼ 0, we
have

R tð Þ ¼ a0 � a1t � a2t
2 � a3t

3 � RT0 þRr0 � L� 2v0 cos uþ b
2

� �
cos

b
2

� �
t

� a0 cos uþ b
2

� �
cos

b
2

� �
t2 � 1

3
g0 cos uþ b

2

� �
cos

b
2

� �
t3

ð6Þ

Higher order components are ignored. a0 is the relative initial range and a1, a2 and
a3 are the relative motion parameters.

The reference signal x tð Þ can be simply expressed as a direct path (DP) component
from the transmitter and the short delay is neglected for simplicity, i.e.

x tð Þ ¼ Ars tð Þ ð7Þ

where Ar is the amplitude of the received reference signal. In this paper, it is assumed
that the multipath clutter has been preprocessed.
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Fig. 1. Sketch map of the bistatic structure of passive radar.
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2.2 Signal Segmentation Method

The segmentation method is shown in Fig. 2. First, the number of segments can be
determined according to the maximum relative velocity of the target required to be
detected by the passive radar system, i.e.

N ¼ 2vmaxT=k ð8Þ

where T is the integration time and k is the wavelength. In this way, the Doppler
ambiguity can be avoided. Then the efficient length of each segment of the reference
signal is Lr ¼ L=N, where L is the total signal length. In order to guarantee the
expected detection range, the overlapping segmentation method is utilized for the echo
signal. The segment length of echo signal is Le ¼ Lr þ fsRmax=c, and Rmax denotes the
maximum relative range required to be detected by radar. At last, pad zeros for the
segmented reference signal to insure that the length of each segment of reference signal
and echo signal is equal.

After segmentation, Tr ¼ Lr=fs can be considered as the pulse repetition interval.
Then the equivalent pulse compression can be calculated as

spc tm; t̂ð Þ ¼ A0s0 t̂ � R tmð Þ=cð Þ exp �j
2p
k
R tmð Þ

� �
ð9Þ

where t̂ is the fast time, tm ¼ mTr ðm ¼ 0; 1; � � � ;N � 1Þ is the slow time, s0 tð Þ is the
inverse Fourier transform result of S fð Þj j2, S fð Þ stands for the Fourier transform of the
transmitted signal s tð Þ, A0 ¼ AeAr, and R tmð Þ ¼ a0 � atm � a2t2m � a3t3m.

From (9), it’s easy to see that the target envelope varies with tm and the phase is also
the cubic function of tm. The changes of envelope and phase will easily result in RM
and DFM. For the purpose of coherently accumulating the target’s energy, both the RM
and the DFM are required to be compensated [10].

( )1x t ( )2x t

...

( )1x t
( )2x t

( )1rs t
( )2rs t

( )1rs t
( )2rs t

...
(a) (b)

... ...

Fig. 2. Schematic diagram of signal segmentation method. (a) Segmentation method for echo
signal. (b) Segmentation method for reference signal.
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3 Coherent Integration via MWDO

3.1 Definition and Analysis of GRFT

GRFT is a coherent integration algorithm via jointly searching in multi-dimensional
parameter space. The definition of GRFT in [8] is given as follows:

Suppose a 2D complex function f tm; t̂ð Þ 2 C is defined in the tm; t̂ð Þ plane and a
parameterized P-dimensional function t̂ ¼ g tm; â

P� �
is used for searching a certain

time-varied curve in the plane, where âP ¼ â0; â1; � � � ; âP�1½ �: Then GRFT can be
defined as

G âP
� � ¼ Z 1

�1
f tm; g tm; â

P� �� �
exp j2peg tm; â

P� �� �
dtm ð10Þ

where e is a known constant with respect to g tm; â
P� �
:

Let f tm; t̂ð Þ ¼ spc tm; t̂ð Þ, then (10) can be rewritten as

G âP
� � ¼ Z 1

�1
spc tm; ŝ tmð Þð Þ exp j2pfcŝ tmð Þð Þdtm ð11Þ

where ŝ tmð Þ ¼ 1
c

PP�1

p¼0
âptpm . When the searching values of motion parameters

â0; â1; � � � ; âP�1½ � match with the target’s real motion values a0; a1; � � � ; aP�1½ �, the ideal
coherent integration gain could be achieved, that is G aPð Þ ¼ NA0. Then the target can
be detected and the motion parameters can be easily obtained by the location of the
peak in the parameter space.

In pulse Doppler radar, the blind speed side lobe (BSSL) [11] will appear in GRFT
because of limited integration time, Doppler ambiguity, discrete pulse sampling, and
finite range resolution, which will cause serious false alarms. In DTTB-based passive
radar, the Doppler ambiguity can be avoided by using flexible segmentation method, so
the BSSL phenomenon can also be avoided in GRFT.

3.2 Modified Wind Driven Optimization

The model of wind driven optimization (WDO) is based on the definition of trajectories
of small air parcels within the earth atmosphere [12]. In WDO, a population of air
parcels is distributed throughout a N-dimensional problem space, and the velocity of air
parcels is updated in each iteration process based on the equation which is derived from
Newton’s second law of motion and the ideal gas laws. It is given by

Unew ¼ 1� að ÞUcur � gXcur þ RT 1=i� 1j j Xopt � Xcur
� �	 
þ CUother dim

cur =i
� � ð12Þ

where i represents the rankings of the air parcels. Equation (12) demonstrates that the
updated velocity Unew for the next iteration process is associated with the current
velocity Ucur , the current position Xcur , the optimal position Xopt with the highest
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pressure value that has been found until the current iteration, the current velocity
Uother dim

cur which is randomly chosen from other dimensions, and the four coefficients a,
g, RT , and C. The position of air parcel can be updated by

Xnew ¼ Xcur þUnew ð13Þ

WDO provides extra degrees of freedom to fine tune in the velocity update equation
compared with PSO, which indicates a better optimization capacity. As illustrated in
[12], the optimum performance of WDO can be achieved by selecting proper values for
the four coefficients, but the optimum values of the WDO coefficients may vary from
problem to problem. Considering the problem, we propose the modified WDO
(MWDO) to tune the four coefficients in each iteration process by random distributions.
The values of coefficients are given by

a ¼ RT ¼ g ¼ 0:1 � rand L ð14Þ

C ¼ 2:5 � rand U ð15Þ

where the random number rand U is uniformly distributed between 0 and 1, and the
random number rand L is subject to Levy distribution [13]. Its probability density
function over the domain x� l is

f x; l; cð Þ ¼
ffiffiffiffiffiffi
c
2p

r
e�

c
2 x�lð Þ

x� lð Þ3=2
ð16Þ

where c is the scale parameter and l is the location parameter. In this paper, l ¼ 0 and
c ¼ 0:001 are selected.

By applying MWDO, the optimization ability of WDO in a noisy environment can
be enhanced and at the same time, the difficulty in choosing proper coefficients in
WDO can be overcome.

3.3 Fast Implementation of GRFT via MWDO

GRFT can be fast implemented via MWDO. The whole target detection procedure
based on MWDO in DTTB-based passive radar is shown in Fig. 3 and the detailed
description of the proposed method is given as follows:

Step 1. Specify the basic parameters in MWDO, including the population size S, the
maximum number of iteration kmax, the dimension of the searching space, the
searching range of each parameter, and the restrictions on velocities of air
parcels.

Step 2. Initialize air parcels’ locations and velocities.
Step 3. Sort air parcels based on their pressure values. In GRFT, pressure value refers

to the absolute value of GRFT, denoted by G Xð Þj j.
Step 4. Generate the values of coefficients of MWDO via (14) and (15).
Step 5. Update the velocities and locations of air parcels via (12) and (13).

220 Y. Zhou et al.



Step 6. Sort these updated air parcels based on their pressure values and find the
current optimal air parcel XoptðkÞ.

Step 7. Repeat Step 4 to Step 6 until one of the following conditions is met:
(1) G XoptðkÞ

� ��� ��[ c and k� kmax;
(2) G XoptðkÞ

� ��� ��� c and k[ kmax.

The parameter c is the detection threshold calculated from the preset false alarm
probability. When condition 1 is met, the target is detected and when condition 2 is
met, the radar system tells that there is no target.

4 Numerical Results

In this section, numerical experiments are provided to demonstrate the effectiveness of
the proposed fast implementation method of GRFT. The DTTB-based passive radar
parameters are listed in Table 1.

4.1 Detection Performance

The detection performances of traditional ergodic-search GRFT, PSO-based GRFT,
MWDO-based GRFT, KT, and MTD are investigated via Monte Carlo trials. The false
alarm probability is Pfa ¼ 10�6. The population size S ¼ 150 and the maximum
number of iteration kmax ¼ 800 are specified for PSO and MWDO. The relative initial

Raw 1-D data

Segmentation

Pulse compression

Specify basic 
parameters in MWDO

Initialize air particles 

Sort particles based on 
their pressure values

Generate the values of 
the four coefficients 

Update positions and 
velocities

Sort particles based on 
their pressure values

Conditions met?

Target detection

Yes

No

Fig. 3. Flow chart of the target detection method in DTTB-based passive radar.

Table 1. Simulation parameters of DTTB-based passive radar.

Signal mode Bandwidth Carrier frequency Integration time

Single-carrier mode 7.56 MHz 674 MHz 0.22 s
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range and the relative maneuvering motion parameters of the target are given as fol-
lows: a0 ¼ 150 km, a1 ¼ 800 m=s, a2 ¼ 90 m

�
s2, and a3 ¼ 10 m

�
s3. Figure 4 shows

the detection probabilities of the five detectors versus different SNR values. Figure 4
demonstrates that the proposed MWDO-based GRFT is superior to PSO-based GRFT
but still suffers detection performance loss compared with the traditional GRFT. The
reason is that MWDO is a stochastic optimization method and it cannot jump out of the
convergence to noise peaks each time. The detection performance loss of MWDO is the
cost of the reduced computational complexity.

4.2 Computational Cost

Denote the number of range cells, pulses, and searching motion parameters

ap p ¼ 1; 2; 3; � � �P� 1ð Þ by M, N, Np, respectively. Then
QP�1

p¼1
NNp searches are needed

and the computational complexity is O
QP�1

p¼1
MNNp

 !
for the traditional GRFT [14].

While only kmax searches are needed for MWDO and PSO if they are terminated when
the number of iteration reaches kmax. In fact, when condition 1 in Step 7 is met, the two
algorithms can be terminated earlier. The running time of the traditional GRFT,
MWDO-based GRFT, and PSO-based GRFT under different motion orders is shown in
Fig. 5. From Fig. 5 we can see that with the increase of the motion order, the time cost
of GRFT grows nearly exponentially while the running time of MWDO and PSO stays
stable. The computational complexity of MWDO is slightly higher than PSO due to the
additional sorting process of air parcels, which is acceptable. It is obvious that when the
motion order equals to 3, the computational complexity of intelligent optimization
algorithms is far less than that of the ergodic-search GRFT, which validates the
physical realizability of the proposed algorithm.
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Fig. 4. Detection probability of GRFT, MWDO, PSO, KT, and MTD.
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5 Conclusions

This paper deals with the coherent integration problem of the weak maneuvering target
in passive radar using DTTB signals. By designing suitable signal segmentation
method, GRFT can be applied to achieve ideal integration performance by correcting
RM and DFM at the same time in passive radar. Then a fast implementation method for
GRFT is proposed to reduce the computational burden, namely MWDO. Compared
with the ergodic-search GRFT, MWDO requires much lower computational load,
which means it can realize the maneuvering target detection in a much more efficient
way. Compared with the existing PSO method, MWDO has better detection perfor-
mance with a similar computational complexity. It should be noticed that although
MWDO has stronger anti-noise ability, it still suffers some detection performance loss,
which is the cost of the reduced computational burden. Finally, several simulation
experiments are provided to validate the effectiveness of the proposed method. Future
work may further improve the proposed method and extend it to multi-target detection.
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