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Abstract. With the development of hypersonic vehicles in near space such as
X-51A, HTV-2 and so on, tracking for them is becoming a new task and
hotspot. In this paper, a learning tracking algorithm is introduced for hypersonic
targets, especially for the sliding jump maneuver. Firstly the algorithm uses the
Sine model, which makes the tracking model more close to the particular
maneuver, next two Sine models different in angular velocity are used into IMM
algorithm, and it learns the target tracking error characteristics to adjust the
sampling rate adaptively. The algorithm is compared with the single accurate
model algorithm and general IMM algorithms with fixed sampling rate. Through
simulation experiments it is proved that the algorithm in this paper can improve
the tracking accuracy effectively.
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1 Introduction

Near space is the air space from ground 20–100 km, also known as suborbital space or
aerospace transition zone. It is near space where the near space vehicle voyages and
completes the specific tasks such as attacking, reconnoitre, communication, early
warning, navigation and so on [1]. It has very important military value and significance.

The hypersonic vehicle has high speed, strong maneuver and periodic jumping
motion, and its flight process can be simplified into 3 stages: boost section, cruise
section and attack section. Sliding jump flight is adopted in the cruise section and this
kind of trajectory is not easy to be detected and intercepted with strong penetration
capability.

In view of the above characteristics, radar tracking for near space targets is still in
the exploratory stage. Based on the relationship between the position estimation value
and the acceleration, the literature [2] proposed a modified CS model which can be
adjusted adaptively and used it into the IMM algorithm. The literature [3] applied IMM
algorithm with CV and CA models in unscented Kalman filter. The algorithms men-
tioned above are based on the interacting multiple model algorithm. Although the
interaction models are different, they adopt the existing maneuvering models which are
not close to the sliding jump flight. With the idea of current statistical model, the target
angular velocity is corrected in the literature [4], and it was combined with the
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extended Kalman filter, but the maneuvering frequency and maximum acceleration
should be set artificially which means poor adaptive ability. The paper [5] establishes a
specific target motion model for the jumping maneuver, but it needs speed information
and cannot be applied into general phased array radar.

Because of the extremely complex motions of near space targets, it is difficult to
establish accurate models [6]. Therefore, this paper introduces the concept of learning
algorithm and constructs a learning tracking system, which makes the tracking algo-
rithm adaptive to complex motion situation.

2 Learning Tracking Algorithm

2.1 Framework

The system diagram of this algorithm is as follows (Fig. 1):

After the system gets the observations in accordance with the corresponding
sampling period T, data will be processed in IMM-Kalman filter based on 2 Sine
models with different angular velocity, and transmitted to the evaluation system. The
evaluation system determines T in the next time according to the target tracking error
and adjustment rules.

2.2 Model

At present, the most common movement models for maneuvering targets tracking are
Singer model, CS model, Jerk model and corresponding improved model. In the
tracking for linear moving targets, these models have good tracking accuracy. But for
the non-ballistic trajectory of near space hypersonic targets, particularly the sliding
jump maneuver, the former models have low matching degree. This algorithm adopts
Sine model [7].

Sine model’s state equation is as follows:

Xðkþ 1Þ ¼ FðT;w0ÞXðkÞþWðkÞ ð1Þ

Where, k represents time; X ¼ x _x €x vx
� �T

represents state vector, including target
position, velocity, acceleration and jerk; F is state transition matrix; T is sampling
period, and W is Gauss white noise whose covariance is Q.

Fig. 1. Learning tracking algorithm framework.
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Where, r2w represents acceleration variance.
Measurement equation is as follows:

ZðkÞ ¼ HðkÞXðkÞþVðkÞ ð3Þ

In the equation, Z represents measurement vector after unbiased transformation, H
is the measurement matrix, and V is Gauss white noise.

2.3 Residual and Norm

The learning method of this algorithm is constructed based on the residual sequence,
and the following two residual vectors are defined [8]:

Vðkþ 1Þ ¼ HX̂ðkþ 1jkþ 1Þ � Zðkþ 1Þ ð4Þ
�Vðkþ 1Þ ¼ HX̂ðkþ 1jkÞ � Zðkþ 1Þ ð5Þ

The information represented by the two is different: the residual vector Vðkþ 1Þ is
determined by the filtered value of the corresponding measurement information that has
been fused at the kþ 1 moment, and the predicted residual vector �Vðkþ 1Þ is deter-
mined by the predicted state of the k moment. If the measurement information is
reliable, the value of the residual vector indicates the reliability of the Xðkþ 1jkÞ, so the
predicted residual vector can reflect the disturbance of the dynamic system better than
the residual vector.

Define the norm of the predicted residuals as follows:

dðkþ 1Þ ¼ V
Tðkþ 1ÞS�1ðkþ 1ÞV ðkþ 1Þ ð6Þ

In the equation, S is the innovation covariance matrix.

2.4 Adjustment for Sampling Period

The norm reflects the tracking effect of the target, so it is considered as the basis for
adjusting the sampling period.

Sampling period allocation method: when the target is in the non-maneuvering
state, the innovation norm dðkÞ obeys the v2ðmÞ distribution (m is the observation
dimension). Now take dðkÞ as standard to judge whether the target is maneuvering, and
set the false alarm rate of the decision as a, according to the distribution table, we can
find the corresponding threshold da [9]. The aðnÞ false alarm rates are selected as the
key node, and the corresponding value sequence daðnÞ is obtained by v2ðmÞ table, so
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that the sequence data can be compared with the sequence value, and the new sampling
period can be determined by comparing the results.

Taking node number N ¼ 3 as an example, a specific rule is given.
When daðnÞ\dðkÞ\daðnþ 1Þ,
If aðnÞ\10% we think that the target is likely to be maneuvering, then the max-

imum data rate is allocated for the target, such as 0.1 s;
If 10%\aðnÞ\90% we consider the accidental flight disturbance or observation

outliers to make the norm larger, and then assign a lower data rate for the target, such as
0.2 s;

If 90%\aðnÞ we think the target is non motorized, then the target data rate is the
lowest value, such as 0.5 s.

If the N takes a larger value, the adaptive sampling period tracking algorithm would
work better in theory.

In the IMM algorithm, there are many d because of the presence of multiple
models. At this point, the d used to decide the sampling interval at the next time is
computed by adding products of multiplying the d of each model with the corre-
sponding model probability.

d ¼
Xj

i¼1

di � ui ð7Þ

Where, j is the number of interactive models, ui is the probability of the i model.

3 Simulation and Analysis

3.1 Simulation Settings

Refering to some basic test data for X-51 released by the U.S. government in May
2013, this paper simplifies the complicated mathematical model [10] (including
dynamics model, engine thrust model, aerodynamic model, atmospheric model and so
on). According to the primary characteristics of the near space vehicle (including flight
height and velocity), an analog trajectory with time length of 300 s is set as follows and
its angular velocity is 0.06 rad/s (Fig. 2). In fact, the target does a uniform motion at
different speeds in the X and Y axis (for this reason, the following simulation only
shows the results in the Y axis), with a sinusoidal motion whose period is 0.06 rad/s in
the Z axis. It is assumed that the sampling period of ground-based radar is 0.2 s, the
radial distance error is 100 m, the azimuth and pitch angle errors are both 0.1°. The
data processing method is an unbiased conversion measurement Kalman algorithm.

3.2 Experiment One

Taking into account that the parameter w of the Sine model is to set artificially in
advance, and the aircraft’s sliding jump trajectory in the actual situation is not known
exactly, so we need to consider the influence on the tracking effect when the angular
speed w is set different values. In the experiment we set 3 different angular velocity of
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0.06 rad/s, 0.05 rad/s, and 0.07 rad/s, among whom 0.06 rad/s matches with the
simulated trajectory’s angular velocity. And then we use the Kalman filter algorithm to
achieve Monte-Carlo simulation for 100 times. The standard examining tracking effect
is the position tracking mean square error in the direction of Z axis. The analysis
process of the other two axes is similar, no more details.

As can be seen from the Figs. 3 and 4, since the Y axes move at the constant speed,
while the Z axis makes sinusoidal accelerationmotion, the root mean square curves of the
filtering error in the X and Y axis are similar, while that of the Z axis is slightly different.
But when different angular velocities are compared, we can find that the error curve when
the angular velocity matches is stable and convergent. In time of about first 50 s the other
two curves have high coincidence degree with the w = 0.06 rad/s curve, this is because
the filter time is not long, the difference is small, then it begins to appear big shock as time
goes, the error caused by themismatch of angular velocity increases and shocks gradually.
Themean square error of each axis of the three angular velocities is statistically averaged,
as shown in the following Table 1. From this experiment it can be concluded that the Sine
model can indeed track high speed targets in sliding jump maneuver with good tracking
accuracy, but the premise is the angular velocity set should match with the actual, if there
are some errors, tracking will be unstable, the filtering error will appear concussion.

3.3 Experiment Two

It is a good method to make use of several Sine models with different angular speed for
interactive tracking under the condition of uncertain target’s actual motion parameters.
In this experiment, two sine models with different angular velocities w = 0.05 rad/s,
and w = 0.07 rad/s are used interactively to track the simulated trajectories of the
above w = 0.06 rad/s aircraft.

Fig. 2. Trajectory simulation of hypersonic target
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Fig. 3. Position root mean square error in Y axis in different w

Fig. 4. Position root mean square error in Z axis in different w

Table 1. Statistical average of position root mean error in z axis

w/
(rad/s)

Root mean square error
in X/m

Root mean square error
in Y/m

Root mean square error
in Z/m

0.06 60.2149 63.4617 85.3250
0.05 101.8573 123.0269 1291.1
0.07 104.8638 134.3005 1623.2
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The tracking root mean square error is compared between the algorithm with
adaptive sampling rate (IMM-AT), and general IMM algorithms whose sampling
period are 0.1 s, 0.2 s and 0.5 s.

The filtered root mean square error curve of the IMM algorithm with three different
fixed sampling intervals is drawn in Figs. 5 and 6. Overall, although the angular
velocity of two Sine models in the interaction differs from the real’s, the filtering curve
is relatively stable without substantial concussion, and the error is generally much less
than single model’s error when w = 0.05 rad/s or w = 0.07 rad/s. On the other hand, in
either direction axis, the root mean square error decreases as the sampling interval
decreases. This shows that, to a certain extent, the filtering results can be improved by
reducing the sampling interval. From the statistical error of the following table, when
T = 0.5 s, the error of the IMM algorithm on the X and Y axis is less than w = 0.06
single model algorithm, but the filtering effect of the Z axis is not as good as that of the
w = 0.06 single model algorithm. This is because the target in the Z axis is accelerated
by sinusoidal motion, and the matching of angular velocity has a great influence on its
filtering. However, the Z axis error of the IMM algorithm when T = 0.2 s is less than
the error from single model algorithm when w = 0.06. So it is possible to reduce the
error when the error is large, especially the Z axis error, by changing the sampling
interval. The root mean square error of the IMM-AT algorithm in the last line of the
Table 2 verifies the feasibility of the algorithm.

Fig. 5. Position root mean square error in Y axis in different T
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4 Conclusion

Aimed at sliding jump maneuver of near space hypersonic vehicle, an interactive
multiple model algorithm based on the Sine model with adaptive sampling rate is
proposed. This is a kind of algorithm that can learn and adjust according to the
feedback of the system. Compared with the single accurate model algorithm and the
IMM algorithm with different fixed sampling rate, it proves the feasibility and prac-
ticability of the learning algorithm in this paper.

Acknowledgments. This work was supported by the National Natural Science Foundation of
China (No. 61571159).

Fig. 6. Position root mean square error in Z axis in different T

Table 2. Statistical average of position root mean error in z axis

Sampling/s Root mean square error
in X/m

Root mean square error
in Y/m

Root mean square error
in Z/m

0.1 37.2816 27.0823 64.1143
0.2 56.6592 39.7474 96.5491
0.5 68.4965 50.5756 132.8217
IMM-AT 48.2112 34.6849 83.3211
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