
Direction of Arrive Estimation in Spherical
Harmonic Domain Using Super Resolution

Approach

Jie Pan(&), Yalin Zhu, and Changling Zhou

College of Information Engineering, Yangzhou University,
Yangzhou 221000, China

panjie1982@nuaa.edu.cn

Abstract. Spherical array plays important role in 3D targets localization. In this
paper, we develop a novel DOA estimation method for the spherical array with
super resolution approach. The proposed method operates in spherical harmonic
domain. Based on the atomic norm minimization, we develop a gridless L1-SVD
algorithm in spherical harmonic domain and then we adopt the spherical ESPRIT
method to two-dimensional DOA estimation. Compared to the previous work,
the proposed method acquires better estimation performance. Numerical simu-
lation results verify the performance of the proposed method.
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1 Introduction

Direction-of-arrive (DOA) estimation is an attractive topic in array signal processing
and finds a variety of application in acoustics and radio science [1]. In recent years,
spherical array has received much attention because of the 3D array geometry con-
figuration to estimation the azimuth and elevation of sources. The spherical array
samples the wave-field by sensors distributed on a sphere. The manifold of the array
can be transformed into Spherical Harmonic (SH) domain and analyze the wave-field
with almost equal resolution in all directions [2, 3].

Several DOA estimation algorithms have been proposed in SH domain. In [4],
conventional MUSIC method is implemented in terms of SH and ESPRIT method is
extended for spherical array, called EB-ESPRIT, in [5]. In [6], the unitary transfor-
mations are proposed in real SH domain to reduce the computational complexity. Most
of these methods rely on the spatial covariance matrix which decomposes the spatial
covariance matrix into signal and noise subspace. However, in limited number of
snapshots and coherent sources cases, the spatial covariance matrix will be distorted.

In [7], a discrete sparse recovery approach called variational sparse Bayesian
learning (VSBL) is applied to SH domain. However, this approach needs discretizing
the parameter space of interest with a grid and in practice the targets may locate
off-grid. To alleviate this drawback, the off-grid sparse Bayesian inference (OGSBI) is
extended to SH domain in [8], but this method is computationally prohibitive because
of joint parameters optimization.
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Recently, several works on sparse recovery have been proposed to estimate
parameters with continuous value. In [9], Candès develops a mathematical theory of
continuous sparse recovery for 1-D frequency extrapolation which called Super Res-
olution approach. In [10] Candès’ method is utilized to DOA estimation for spatial
coprime arrays. In [11], an alternative discretization-free sparse DOA estimation
method for linear array is proposed. In [12, 13], covariance domain DOA estimation
methods with continuous sparsity approach are developed. In [14, 15] the continuous
sparse recovery approach for 1-D parameters is extended to 2-D frequency models.

These methods mentioned above utilize the Vandermonde structure of the sampled
data so as to be limited in case of linear or rectangular arrays. Mahata extend the super
resolution approach to arbitrary linear array and planar array for 1-D parameter esti-
mation in [16, 17] respectively. However, to the best of author’s knowledge, super
resolution approach in SH domain is not available in literature.

In this paper, we propose a novel 2-D DOA estimation method in SH domain with
super resolution approach. We reformulate the array manifold in SH domain as a
weighted Vandermonde structure matrix. By utilizing this model, we modify the atomic
norm minimization algorithm to adapt the processing in SH domain and estimate
azimuth and elevation of targets by spherical ESPRIT. The proposed method do not
need predefined dense grid and joint parameters optimization. Simulation results show
the improved performance of the proposed method.

Notations: ð�ÞT denote the transpose, ð�Þy denote pseudo inverse of a matrix and
ð�ÞH denote conjugate transpose of a matrix or vector. vecð�Þ denotes the vectorization
operator and diagðxÞ denotes a diagonal matrix. �k k2 denotes the Euclidean l2 norm of
a vector. � denotes the Kronecker product.

2 Signal Model

There is a spherical array with I omnidirectional elements distributed on a sphere
whose radius is R. The ith sensor is located at ri ¼ ðR;UiÞ, where Ui ¼ ðhi;uiÞ. There
are L narrowband far-field sources with wavenumber k ¼ k=2p are imping the
spherical array, where k is the wavelength of the sources. The lth source location is
defined as Wl ¼ ðhl;ulÞ, where h is defined as elevation angle and u is defined as
azimuth respectively. The received signals of sensors can be described as:

XðtÞ ¼ AðWÞsðtÞþNðtÞ: ð1Þ

where XðtÞ ¼ ½x1ðtÞ; � � � ; xIðtÞ�T is the received data of sensors, sðtÞ ¼ ½s1ðtÞ; � � � ; sLðtÞ�T
is the emitting signal by sources, and nðtÞ is additive Gaussian white noise and
E nðtÞnHðtÞf g ¼ r2I.

AðWÞ ¼ ½aðW1Þ; � � � ; aðWLÞ� 2 C
I�L is the element-space manifold of the spherical

array, where aðWlÞ ¼ ½a1ðWlÞ; � � � ; aIðWlÞ�T 2 C
I�1. The ith element of the steering

vector aiðWlÞ can be represented in SH series as:
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aiðWlÞ ¼
XN
n¼0

Xn
m¼�n

bnðkRÞ½Ym
n ðWlÞ�HYm

n ðUiÞ: ð2Þ

The far-field phase mode strength is given by:

bnðkRÞ ¼
4pinjnðkRÞ open sphere
4pinðjnðkRÞ � j0nðkRÞ

h0nðkRÞ hnðkRÞÞ rigid sphere

(
: ð3Þ

In (3), hn is spherical Hankel function of second kind and jn is spherical Bessel
function of first kind. j0n and h0n are derivatives of jn and hn. Ym

n ðh;uÞ is the nth order
and mth degree spherical harmonic function:

Ym
n ðh;uÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þðn� mÞ!

4pðnþmÞ!

s
Pm
n ðcos hÞejmu 80� n�N; 0�m� n: ð4Þ

where Pm
n ðcos hÞ is the associated Legendre polynomial.

It is shown in [5] that for order n[ kR, the phase mode coefficient bnðkRÞ decrease
super-exponentially. Hence, for the high order n the phase mode bnðkRÞ will become
small enough that we can truncate the steering vector in (2) to a limited order N with
tolerable error.

Consider maximum order N, substituting (2) into (1), the array manifold of the
spherical array can be written as:

AðWÞ ¼ YðUÞBðkRÞYHðWÞ ð5Þ

where YðUÞ 2 C
I�ðNþ 1Þ2 is a spherical harmonic matrix. Its ith row vector can be

given as:

yðUiÞ ¼ ½Y0
0 ðUiÞ; Y�1

1 ðUiÞ; Y0
1 ðUiÞ; Y1

1 ðUiÞ; � � � ; YN
N ðUiÞ�: ð6Þ

YðWÞ has the similar structure with (6). BðkRÞ 2 C
ðNþ 1Þ2�ðNþ 1Þ2 is the mode strength

matrix defined as:

BðkRÞ ¼ diag b0ðkRÞ; b1ðkRÞ; b1ðkRÞ; b1ðkRÞ; � � � ; bNðkRÞð Þ ð7Þ

Considering that the spherical harmonics are the orthonormal basis on unit 2-sphere,
the spherical harmonics decomposition of the received data XðtÞ can be written as:

PnmðtÞ ¼ YHðUÞCXðtÞ ð8Þ

where Pnm ¼ ½P00 P1ð�1Þ P10 P11 � � �PNN �T and C ¼ diagða1; a2; � � � ; aIÞ is the weight
matrix. For some special configurations of the spherical array and corresponding
weight C introduced in [19], the spherical harmonic functions satisfy the orthogonality
property:
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YHðUÞCYðUÞ ¼ I ð9Þ
Substituting (1) and (5) into (8), utilizing (9), the SH domain signal model can be

written as:

PnmðtÞ ¼ BðkRÞYHðWÞsðtÞþVnmðtÞ ð10Þ

where VmnðtÞ ¼ YHðUÞCNðtÞ.
It is worth to note that the data model in SH domain can be described in weighted

trigonometric polynomial form. This property will be useful for employing the super
resolution approach in SH domain.

Considering the definition of the spherical harmonic function in (4), Pm
n ðcos hÞ

takes form of:

Pm
n ðcos hÞ ¼ ðsin hÞ mj jLðmÞn ðcos hÞ ð11Þ

where LðmÞn is the kth derivative of the Legendre polynomial of degree n. Since cos h ¼
ðejh þ e�jhÞ=2 and sin h ¼ ðejh � e�jhÞ=2, Pm

n ðcos hÞ is a trigonometric polynomial of

degree n which is given by Pm
n ðcos hÞ ¼

Pn
l¼�n

bn;m;le
jlh
with unique coefficients bn;k;l

� �
.

Then, we can write (4) as:

Ym
n ðh;uÞ ¼

Xn
l¼�n

An:mbn;m;le
jlhejmu ð12Þ

where An:m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þðn�mÞ!
4pðnþmÞ!

q
. Substituting (12) in (10), the SH domain data model can

be given by:

Pnm ¼ BðkRÞGDðWÞsðtÞþVnmðtÞ ð13Þ

where G ¼ ½G00;G1ð�1Þ;G10;G11 � � �GNN �T;Gmn ¼ ½An:mbn;m;�n;An:mbn;m;�ðn�1Þ; � � � ;
An:mbn;m;n�, DðWÞ ¼ ½dðW1Þ; � � � ; dðWLÞ�, dðWlÞ is written as:

dðWlÞ ¼ dhðhlÞ � duðulÞ
dhðhlÞ ¼ e�jNhl ; � � � ; 1; � � � ; ejNhl� �T
duðulÞ ¼ e�jNul ; � � � ; 1; � � � ; ejNul

� �T ð14Þ

Considering the model described in (13) with K snapshots, we stack them in a matrix
as:

P ¼ BðkRÞGDðWÞSþV ð15Þ

where P ¼ ½Pnmðt1Þ;Pnmðt2Þ; � � � ;PnmðtKÞ�, S ¼ ½s1; s2; � � � ; sL�T. The data model in (15)
is utilized for the proposed SH domain DOA estimation method.
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3 Super Resolution Approach in SH Domain

It is suggested in [12] that the noisy signal can be recovered by atomic norm
minimization:

min Zk kA
s:t: Z� Pk k� e

ð16Þ

where A :¼ BðkRÞGdðWÞsjW ¼ ðh;uÞ; h 2 ½0; p�;u 2 ½�p; pÞ; sk k2¼ 1
� �

denotes the
atomic set. Due to L0-norm is not convex, we consider the convex relaxation and the
atomic norm of Z which can be defined as:

Zk kA¼ inf t[ 0 : Z 2 t convðAÞf g

¼ inf
X

l
cl Z ¼

X
l

clBðkRÞGdðWlÞsl; cl 	 0

�����
( )

ð17Þ

The conventional atomic norm minimization methods are relying on the Vander-
monde decomposition of Toeplitz matrices, hence they are limited to Vandermonde
structure model. Here, we utilize the relationship between the data model in SH domain
and a Vandermonde matrix shown in (15) to develop an atomic norm minimization
method in SH domain with semidefinite programing (SDP):

min
T;W;Z

1
2
trðSðTÞÞþ 1

2
trðWÞ

s:t:
SðTÞ Z

ZH W

� 	
	 0

BðkRÞGZ� Pk k2 � e

ð18Þ

where T 2 C
ð4N þ 1Þ�ð4Nþ 1Þ, SðTÞ is a two-fold block Toeplitz defined from T as:

SðTÞ ¼
T0 T�1 � � � T�2N

T1 T0 � � � T�2Nþ 1

..

. ..
. . .

. ..
.

T2N T2N�1 � � � T0

2
6664

3
7775 ð19Þ

where each block Tl;�2N\l\2N is an ð2Nþ 1Þ � ð2Nþ 1Þ Toeplitz matrix con-
structed from the lth row of T:

Tl ¼

xl;0 xl;�1 � � � x�2N

xl;1 xl;0 � � � xl;�ð2N�1Þ
..
. ..

. . .
. ..

.

x2N xl;2N�1 � � � xl;0

2
6664

3
7775 ð20Þ
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For the large number of snapshots K, we can factorize the matrix P in terms of
singular value decomposition P ¼ URV, we can construct P0 ¼ ULRL, where RL is the
diagram matrix consist of largest L singular value and UL is the corresponding singular
value vectors. It is shown in [17] that the SDP problem in (18) can be written as:

min
T;W;Z00

1
2 trðSðTÞÞþ 1

2 trðWÞ

s:t:
SðTÞ Z00

Z00H W

� 	
	 0

BðkRÞGZ00 � P0k k2 � e

ð21Þ

We argue that the choice of the parameter e can done as
ffiffiffiffiffiffiffiffiffiffiffi
LKr2

p
. The proposed

method in (21) can be regarded as the atomic norm minimization based L1-SVD
algorithm in spherical harmonic domain.

Then, we can apply spherical ESPRIT [5] to the recovered covariance matrix
R ¼ BðkRÞGSðT̂ÞGHBHðkRÞ to estimate DOAs of the targets, where SðT̂Þ is the
solution of (21). By expressing R in terms of eigenvalue decomposition, we can get:

R ¼ UsRsUH
s þ r2UNUH

N ð22Þ

According to the property of the associated Legendre polynomials, the it can be
given by:

D1U0
s ¼ E DT

DH

� 	
ð23Þ

where D1;D2;D3 are auxiliary matrices with analytical expressions defined in [5], and
E is given by:

E ¼ D2Uð�1Þ
s D3Uð1Þ

s

� � ð24Þ

Uð�1Þ
s ;U0

s ;U
ð1Þ
s is the first, middle and last sub-matrix from Us as shown in [5]. Then D

can be solved as:

D ¼ ðEHEÞ�1EHD1U0
s ð25Þ

Compute the eigenvalues ul; l ¼ 1; 2; � � � ; L of D. The estimation of the elevation and
azimuth of the lth target are hl ¼ tan�1 ulj j and ul ¼ argðulÞ respectively.

4 Simulation Results

In this section, simulations are presented to study the DOA estimation performance of
proposed method compared with the spherical ESPRIT in [5]. The radius R of the
spherical array used in the simulations is 0.042 m. There are 32 sensors mounted on the
open sphere in a uniform way. The maximum order of the spherical harmonic is N ¼ 4.
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Firstly, we assume that there are two independent sources at ðh1;u1Þ ¼ ð40
; 70
Þ
and ðh2;u2Þ ¼ ð50
; 120
Þ impinging the spherical array, where h;u are the elevation
and azimuth respectively. 100 snapshots is collected. The RMSE of parameter esti-
mation is defined as:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
J

XJ
j¼1

ðh_ij � hiÞ
vuut ð26Þ

J the number of Monte Carlo trials is 200. The Fig. 1 shows that the proposed
method achieve improved performance compared with the other methods especially in
low SNR.

In the second example, we investigate the accuracy of our method in multipath
environment. Considering two coherent sources at ðh1;u1Þ ¼ ð40
; 70
Þ and
ðh2;u2Þ ¼ ð50
; 120
Þ, SNR is 10 dB, the number of snapshot is 200. The number of
Monte Carlo trials is 200. The simulation results of the proposed method and spherical
ESPRIT are shown in Fig. 2.

Fig. 1. RMSE of Azimuth and elevation versus SNR for uncorrelated sources
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Fig. 2. Spectrum using different methods for coherent sources
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It is shown that the proposed method works well with coherent sources, while the
spherical ESPRIT method can’t work in multipath environment.

5 Conclusions

In this paper, we proposed a novel DOA estimation method for spherical array with
super resolution approach. The proposed method does not need the grid discretization
and multiple parameters optimization. This method works well in low SNR and
multipath environment. Simulations show our method the superior performance
compared with conventional techniques.

Acknowledgments. This work was supported by National Natural Science Foundation of China
(61601402), Jiangsu Province Science Foundation of China (BK20160477).

References

1. Trees, H.L.V.: Optimum Array Processing: Part IV of Detection, Estimation and Modulation
Theory. Wiley, New York (2002)

2. Teutsch, H., Kellermann, W.: Detection and localization of multiplewideband acoustic
sources based on wavefield decomposition using spherical apertures. In: Proceedings of
ICASSP 2008, pp. 5276–5279 (2008)

3. Rafaely, B., Peled, Y., Agmon, M., Khaykin, D., Fisher, E.: Spherical microphone array
beamforming. In: Cohen, I., Benesty, J., Gannot, S. (eds.) Speech Processing in Modern
Communication: Challenges and Perspectives, vol. 3. Springer, Berlin (2010). https://doi.
org/10.1007/978-3-642-11130-3_11

4. Li, X., Yan, S., et al.: Spherical harmonics MUSIC versus conventional MUSIC. Appl.
Acoust. 72(9), 646–652 (2011)

5. Goossens, R., Rogier, R.: 2-D angle estimation with spherical arrays for scalar fields. IET
Sig. Process. 3(3), 221–231 (2009)

6. Huang, Q., Zhang, G., et al.: Unitary transformations for spherical harmonics MUSIC. Sig.
Process. 131, 441–446 (2016)

7. Huang, Q., Zhang, G., et al.: Real-valued DOA estimation for spherical arrays using sparse
Bayesian learning. Sig. Process. 125, 79–86 (2016)

8. Huang, Q., Xiang, L., et al.: Off-grid DOA estimation in real spherical harmonics domain
using sparse Bayesian inference. Sig. Process. 137, 124–134 (2017)

9. Candès, E.J., Fernandez-Granda, C.: Towards a mathematical theory of super-resolution.
Commun. Pure Appl. Math. 67(6), 906–956 (2014)

10. Tan, Z., Eldar, Y., et al.: Direction of arrival estimation using co-prime arrays: a super
resolution viewpoint. IEEE Trans. Sig. Process. 62(21), 5565–5576 (2014)

11. Yang, Z., Xie, L., et al.: A discretization-free sparse and parametric approach for linear array
signal processing. IEEE Trans. Sig. Process. 62(19), 4959–4973 (2014)

12. Hung, C.Y., Kaveh, M.: Super-resolution DOA estimation via continuous group sparsity in
the covariance domain. In: IEEE International Conference on Acoustics, Speech and Signal
Processing (2016)

186 J. Pan et al.

http://dx.doi.org/10.1007/978-3-642-11130-3_11
http://dx.doi.org/10.1007/978-3-642-11130-3_11


13. Wu, X., Zhu, W.P., et al.: Direction-of-arrival estimation based on Toeplitz covariance
matrix reconstruction. In: IEEE International Conference on Acoustics, Speech and Signal
Processing (2016)

14. Tang, G., Bhaskar, B., Shah, P., Recht, B.: Compressed sensing off the grid. IEEE Trans. Inf.
Theory 59(11), 7465–7490 (2013)

15. Chi, Y., Chen, Y.: Compressive two-dimensional harmonic retrieval via atomic norm
minimization. IEEE Trans. Sig. Process. 63(4), 1030–1042 (2015)

16. Mahata, K., Hyder, M.M.: Frequency estimation from arbitrary time samples. IEEE Trans.
Signal Process. 64(21), 5634–5643 (2016)

17. Mahata, K., Hyder, M.M.: Grid-less TV minimization for DOA estimation. Sig. Process.
132, 146–155 (2017)

Direction of Arrive Estimation in Spherical Harmonic Domain 187


	Direction of Arrive Estimation in Spherical Harmonic Domain Using Super Resolution Approach
	Abstract
	1 Introduction
	2 Signal Model
	3 Super Resolution Approach in SH Domain
	4 Simulation Results
	5 Conclusions
	Acknowledgments
	References


