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Abstract. In this paper, a three-dimensional imaging method for sparse multiple
input multiple output (MIMO) synthetic aperture radar (SAR) is proposed. Due
to the limitation of the antenna array length in DLSLA 3-D SAR, the cross-track
resolution is poor than the resolution in high and along-track direction. To obtain
high resolution in cross-track domain, the multiple signal classification (MUSIC)
algorithm is introduced into the imaging problem. However, the MUSIC invalid
under the condition of less snapshot numbers and presence of coherent sources,
which may be caused by data missing or sparse sampling in practice. To over-
come these limitations, after the preprocessing such as the range and along-track
imaging with ordinary Nyquist based methods, the motion compensation and the
quadratic phase compensation, this paper transform the process of cross-track
direction into a multiple measurement vectors (MMV) model and applies com-
pressive multiple signal classification (CS-MUSIC) algorithm rather than the
conventional method or MUSIC algorithm. Based on CS-MUSIC algorithm,
imaging result of high resolution with less snapshot numbers. Compared with the
CS-based method, the proposed approach can obtain a better performance of
anti-noise. The simulated results confirm the effect of the method and show that it
can improve the imaging quality.
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1 Introduction

Downward-looking sparse linear array three-dimensional synthetic aperture radar
(DLSLA 3-D SAR) obtains range resolution by pulse compression, azimuth resolution
by virtual aperture synthesis with platform movement, and cross-track resolution by a
linear array antenna [1]. Given the 3-D imaging capacity and downward-looking
geometry, the problems in the conventional two-dimensional SAR can be solved by
DLSLA 3-D SAR [2] ,which has attracted an increasing interest in recent years.
Since ONERA [3] and ARTINO [4], as the real systems of MIMO-SAR, had been
developed, a number of traditional 2D SAR imaging algorithms were extended into this
3D imaging mode such as chirp scaling algorithm [5], range migration algorithm [6]
and polar format algorithm [7], which are based on matched filter (MF).

Due to the limitation of the space and capacity, the main problem of DLSLA 3-D
SAR is that the resolution of cross-track direction is lower than the along-track and
range direction. In addition, limited by the length of data, the resolution obtained by
traditional MF method will be restricted because of Rayleigh limit To solve this
problem, there are mainly two types super-resolution imaging methods, the methods
respectively based on compressive sensing (CS) [8–10] and spatial spectrum estimation
[11, 12], have been proposed for DLSLA 3-D imaging. However, the CS-based
methods requires the sparsity of the target in observation scene and the resolution
performance is noise sensitive, which limit the applications of DLSLA SAR. Besides,
MUSIC invalids because of the coherence of scatterers in a realistic SAR imaging case,
which can be solved by the spatial smoothing method with the reduction of real
aperture and the dramatically decreased resolution [11, 12]. In addition, the data
missing or sparse sampling resulted in the problem of less snapshot numbers and
above-mentioned MUSIC-based method invalids in this case. To obtain the advantages
of CS and MUSIC, CS-MUSIC [13] method have been proposed. The method has
estimation accuracy under the condition of different snapshots and is robust to noise.

To solve these aforementioned problems of CS and MUSIC in DLSLA SAR, a
novel imaging algorithm based on CS-MUSIC is proposed in this paper. The
cross-track process is transformed into a Multiple Measurement Vectors
(MMV) model, which will enhance the computational efficiency and elevate the per-
formance of anti-noise compared with Single Measurement Vectors (SMV) model [14].
The cross-track location of the target is obtained by CS-MUSIC with constructing a
new orthogonal space and searching peaks. The scattering intensity is recovered by the
fast Fourier transform (FFT), which can also reduce the range of searching peaks. The
super-resolution imaging result under the noise scenarios can be reconstructed by
sparse sampling. Finally, we validate our theory by extensive numerical experiments.

2 Geometry and Signal Model

The geometry of DLSLA 3D SAR is shown in Fig. 1. The radar platform flies along
the X-axis, at height H with velocity v. The array along the cross-track direction (Y-
axis) is composed of N antenna elements with the equal distance d. At slow time tm, the
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nth antenna element is located at Pmn = (xm, yn, H), where xm ¼ vtm; yn ¼ �Lyd=2þ
ðn� 1Þd. The linear array length is Ly = (N − 1)d. The point scatterer Pk(xk, yk, zk),
the instantaneous distance R between Pk and the nth transmitting antenna can be
expressed as

R tm; ynð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vtm � xkð Þ2 þ yn � ykð Þ2 þ H � zkð Þ2

q
� R0 þ x2m � 2vtmxk

2R0
þ y2n � 2ynyk

2R0

ð1Þ

where R0 is the projection of the range on the zero-Doppler plane.
The antenna element transmits a linear frequency modulation signal and the echo

data can be expressed as

S t; tm; ynð Þ ¼
X
K

rk exp j2pKr t � R tm; yn;Kð Þ
c

� �2

�j4p
R tm; yn;Kð Þ

k

 !
ð2Þ

where rk is the backscattering coefficient, c is the light speed and, Kr is the chirp rate
and k is the wave length.

After the received signal are focused into two-dimensional points in the range and
along-track domain, the rest phase obtain the cross-track information and two quadratic
phase terms, which is about the flight distance and at slowtime tm and the location of
the nth antenna element. Therefore, echo signal can be rewritten as

Sn ¼
X
K

ck exp �j
4pynyk
kR0

� �
þx ð3Þ
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Fig. 1. DLSLA 3-D SAR imaging geometry model.
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where ck is the coefficient of the kth point after two-dimensional focused, x is the noise
with zero mean and variance r2.

3 Proposed Imaging Algorithm

In this paper, in order to improve the resolution and enhance the computational effi-
ciency for DLSLA 3-D SAR, a imaging method is proposed, in which the cross-track
process is regard as a MMV model and solved by CS-MUSIC.

3.1 MMV Model for Cross-Track Reconstruction

As we can see, the grid points on the cross-track direction in DLSLA 3-D SAR can be
discretized as yq = qDy, where q ¼ 1; 2; : : :;Q, Dy is the sampling intervals in the
cross-track domain. Assuming sn ¼ ½snðt1Þ; � � � ; snðtM1Þ� 2 C

M1�1 is the measurement
signal of nth antenna with M1 sample number in cross-track direction. cn ¼
½cn1; cn2; � � � ; cnQ� 2 C

Q�1 is the corresponding focused vector of the backscattering
coefficient after cross-track focussing. Then, the signal shown in (3) is a linear mea-
surement model, which can be written as

sn ¼ Wc � cn þx ð4Þ

where

Wc ¼ u1;u2; � � � ;uq � � � ;uQ

h i
ð5Þ

where

uq ¼ exp �j2p 2yq
�
kR0

� �
y1

� �
; � � � ; exp �j2p 2yq

�
kR0

� �
yN

� �� 	 ð6Þ

The structure of Eq. (4) is coincidence with the SMV mdoel. So, we can recover the
azimuth signal c from measurement vector sn with CS theory. Wc is the sparse dic-
tionary. Next, we can get the low-dimensional measurement vector through down
sampling. We choose the random partial unit matrix as sensing matrixUn 2 R

M�M1 . So
the down sampling signal can be expressed as

s0n ¼ Unsn ¼ UnWc � cn; n ¼ 1; � � � ;N ð7Þ

where s0n is the down sampling signal.
Thus, for cross-track measurement vector, the sparse represent c of signal sn can be

recovered by the following problem

ĉn ¼ min
cn

cnk k1; s:t: s0n �UnWccn


 



2\e ð8Þ
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In the reconstruction of cross-track signal, the cross-track direction is vertical with
azimuth direction. Meanwhile, at the far field condition, with the length restriction of
array antenna, there is no range migration to the same target for all antenna elements. It
is implies that the sparse structure of each measurement is the same. Thus, the
cross-track direction recovery can be implemented by MMV model. Additional, a same
sensing matrix Uc 2 R

M�M1 should be adopted for the multiple measurement vectors.
That is, we can take the Un as Uc for any n ¼ 1; � � � ;N.

Thus, the multiple measurement vectors can be denoted as S ¼ ½s1; � � � ; sN �. M1 can
be regard as the snapshots number. The down sampling signal can be denoted as
N ¼ UaS. And the recovery signal can be denoted as c ¼ ½c1; � � � ; cN �. Thus, the
problem with MMV model can be reformulated as follows

ĉ ¼ min
c

ck k2;1 s:t: N� Ack k2\e; A ¼ UaWc ð9Þ

where e 2 C
M�N . �k k2;1 is the (2, 1) norm which is defined by ck k2;1¼

PN
i¼1 cik k2 and

ci is the ith row of c.

3.2 CS-MUSIC Algorithm

The signal subspace is R(S) and the noise subspace is RðxÞ, where Rð�Þ denotes the
linear space. However, matrix A, the measurement matrix after sparse sampling may
not satisfy the above-mentioned property.

The support set of can be denoted by suppðcÞ ¼ f1� q�Q : cq 6¼ 0g, where cq is
the qth raw of c. AIK�M1

2 C
M�ðK�M1Þ is composed of the columns of A, and the

indexes of the columns are belong to IK�M1 , which is a subset of suppðcÞ and
IK�M1j j ¼ K �M1. When K[M1 ,the array manifold space RðAIK�M1

Þ and noise
subspace RðxÞ are not orthogonal. PRðxÞ denotes the correlation matrix of noise sub-
space can be written as xxH. Thus, the projection space is RðxxHAIK�M1

Þ.
According to the above analysis, there are three steps in CS-MUSIC algorithm.

Firstly, the indexes set IK�M1 is reconstructed by SOMP or other CS methods. Sec-
ondly, the projection space RðxxHAIK�M1

Þ can be obtained by IK�M1 and A. Then the
new noise subspace in is RðPRðxÞ � PRðxxHAIK�M1

ÞÞ.Then the spatial CS-MUSIC spec-

trum can be expressed as

PCS�MUSIC yq
� � ¼ 1

A yq
� �H

PR xð Þ � P
R xxHAIK�M1

� �
0
@

1
AA yq

� �
ð10Þ

3.3 FFT in Cross-track Processing

Due to the SMV model, the spatial smoothing method and searching the peak of the
spatial spectral in cross-track domain, the cost of computation in the traditional MUSIC
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algorithm is unacceptable. MMV model and the CS method have the less burden on
peak searching rather than SMV model and spatial smoothing method, respectively.
Thus, the FFT can decrease the spectral range of peak searching, which should be
adopted.

And the coefficients can be obtained by the fast Fourier transform and be
expressed as

g xð Þ ¼
XN
n¼1

S ynð Þ exp �j2p
xn
N

� �
; x ¼ 1; 2; . . .N ð11Þ

The reduction of the computation can be expressed as

l ¼ [ P
i¼1Dfi
fall

ð12Þ

where P is the major lobe numbers, Dfi is the width of the peak lobe, [ P
i¼1Dfi denotes

the union of the 3 dB of each major lobe and fall is the spatial spectral range in
cross-track domain.

4 Simulations

To do further analysis, the simulations are provided. The parameters of platform and
antenna, which are referenced the ARTINO system [4], are shown in Table 1.

The algorithm is designed for 3D distributed scene in real use. So, 3D distributed
imaging scene simulation must be added to make the imaging scene less sparse and
check the performance. Figure 2 shows the imaging results of the L1-CS method,
MUSIC method and CS-MUSIC method. As we can see, the imaging result in Fig. 2(b)
is complete and clear, the Fig. 2(c) misses some scattering points. That is caused by the
scene is not sparse enough, which means the application of CS-based method is lim-
ited. The cross-track resolution in Fig. 2(d) is lower than the resolution in Fig. 2(b) and
(c) because of the reduction of aperture in smoothing algorithm. The validity of the
proposed method has been verified.

Table 1. Parameters of platform and antenna.

Parameters Value Parameters Value

Carrier frequency fc (GHz) 37.5 Space distance of adjacent EPC d (m) 0.004
Bandwidth Br (MHz) 300 Number of transmitting antenna Nt 10
Height of platform H (m) 500 Number of receiving antenna Nr 11
Velocity of platform v (m/s) 15 Cross-track resolution (m) 4.5
Pulse duration Tr (us) 0.1 Azimuth resolution (m) 0.5
Pulse repeat frequency PRF (Hz) 1000
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To verify the anti-noise performance, the effects of signal-to-noise ratio (SNR), the
point interval, and the probability of resolution are provided. In Fig. 3, it can be seen
that the probability of resolution are improved with the point interval raised.
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Fig. 2. Three dimensional imagery with SNR = 10 dB. (a) The distribution of the 3D imaging
scene, (b) reconstructed by CS-MUSIC algorithm, (c) reconstructed by L1-CS algorithm,
(d) reconstructed by MUSIC algorithm.
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Fig. 3. Probability of separation versus different point interval. Two points are provided at
(0, 0, 0) and (0, 0, 0.25qy–1.2qy) with interval 0.05qy. The times of Monte Carlo simulation is
500.
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The spatial spectrum of proposed CS-MUISC-based method, the ordinary spatial
smoothing and nearby spatial smoothing method are given. Figure 4 shows five points
located at −7, −4, 0, 5, and 9 m in cross-track domain. The spatial spectrum of
proposed CS-MUISC-based method has five peaks, however, the spatial spectrum of
nearby spatial smoothing method has only four peaks, and the spatial spectrum of the
ordinary spatial smoothing method has only three peaks.

5 Conclusion

In this paper, we exploit the CS-MUSIC method for DLSLA 3-D SAR imaging at
cross-track direction. The cross-track resolution can be improved compared with the
conventional MUSIC-based imaging method, and the proposed method can obtain a
better performance of anti-noise compared with the CS-based method. Finally, we
validate our theory by extensive numerical experiments.
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