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Abstract. Sparse SAR imaging based on Lq(0 < q < 1) regularization has
become a hot issue in SAR imaging. However, it can be difficult to determine a
suitable value of the regularization parameter. In this paper, we developed a
novel adaptive regularization parameter determination method for Lq regular-
ization based SAR imaging. On the basis that the noise type in SAR system is
mostly additive Gaussian white noise, we present a method for determining the
regularization parameter through evaluating the statistics of noise. The param-
eter is updated through validating the statistical properties of the reconstruction
error residuals in a suitable Noise Confidence Region (NCR). The experiment
results illustrate the validity of the proposed method.

Keywords: SAR imaging - Lq(0 < q < 1) regularization
Regularization parameter determination

1 Introduction

SAR imaging can be seen as an ill-posed inverse scattering problem whereby a spatial
map of reflectivity is reconstructed from measurements of scattered fields [1]. In
conventional SAR imaging, the data must be acquired at the Nyquist rate. The recently
emerging of compressed sensing (CS) suggests that it is possible to recover a sparse
signal from only a small number of random measurements, which permits signals to be
sampled at the sub-Nyquist rate. More recently, another type of reconstruction algo-
rithms called Lq norm regularization, have been utilized for radar imaging. Specially,
when g <1, many advantages over conventional radar imaging were demonstrated
including enhanced features, increased resolution and reduced sidelobes. The L1 reg-
ularization is used in radar imaging in [2] as an alternative method for LO regularization
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in CS [3, 4]. Since L1 regularization is a convex problem, it can be very efficiently
solved. In [5], Lq (0 <g< 1) regularization was introduced as a further improvement
upon L1 regularization, it proves that Lq (0<g<1) regularization can assuredly
generate much sparser solutions than L1 regularization. Because of this, the Lq
(0<g<1) regularization has been accepted as a useful tool for solving the sparse SAR
imaging problems.

In Lq regularization based SAR imaging approaches, the regularization parameter 4
has a substantial impact on the imaging result. Inappropriate choice of these parameters
can either trap the algorithm in local minima and/or lead to a lower convergence rate.
Specifically, in SAR imaging task, if A is too small, sidelobes are only partially reduced
and there will still exist some noise. If 1 is too large, the reconstruction image will be
over-smoothed [6]. Usually, 4 is set to be a fixed constant (greater than 0). However,
the original setting of / doesn’t always apply to all imaging situations. There are also
some methods been proposed to iteratively update the regularization parameters, such
as use of the discrepancy principle [7] that seeks for the noise-only residual, and
L-curve, which is based on the plot of the norm of the regularized solution versus the
norm of the corresponding residual [8]. However, this type of methods suffers a
time-consuming iterative process and may decreases the convergence of Lq recon-
struction algorithms, which seriously limits the wide use of these methods.

In this paper, we present a regularization parameter determination method based on
the properties of the additive noise. By assuming that the radar system noise and other
additive noise follow the white Gaussian distribution, we define a probabilistic region
of confidence for the noise coefficients. We update 4 at the end of each iteration so that
the statistical properties of the error residuals can fall into the noise confidence region.
The updating algorithm stops when the residual has a Gaussian like structure. This
method can avoid the over-smoothing without lowering the convergence speed.

The reminder of this paper is organized as follows. Section 2 presents the
Sparse SAR imaging approach based on Lq regularization framework. Section 3 pre-
sents the regularization parameter determination method. Section 4 shows some sim-
ulation results to verify the effectiveness of the proposed approach. Section 5 provides
the conclusion.

2 Sparse SAR Imaging Based on Lq Regularization

2.1 SAR Observation Model

The geometry of the SAR imaging system and the observation scene is shown in
Fig. 1. Supposing the velocity of the platform is v. The transmitted signal of SAR
imaging system is the linear-frequency-modulated (LFM) signals, which can be
modeled by

N t o
s(7, tw) = rect <F> - exp [j2nfot + jayi’] (1)
p
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Fig. 1. SAR imaging geometry.

where 7 is the fast time, 1 = 7 +1,, is the full time, 7, is the slow time; rect(/T,,) is the
rectangular window with a width of 7),, T, is the pulse repetition interval; fy is the
carrier frequency and y is the chirp rate. The received two dimensional SAR data can be
written as:

. i— .
stitn) = [[ ot (#) - expjmy(i — (x,9))° — 2nfoe(x, )] dy
D p
(2)
where D is the imaging area, (x,y) is the coordinates of scatteres in D and o (x,y)

denotes the scattering reflectivity coefficient at (x,y). 7(x,y) = 21/% + (x — u)* / ¢

is the delay of the echo signal, u,, = v - 1, is the platform position and c is the speed of
light. Now assume that the imaging scene is discrete into a point-scattering model,
which includes M x N scatterers with the scattering coefficients o (x,y), x = 1,2,... .M
and y=1,2,...,N. Therefore, (2) can be expressed as:

i) = S o(ny) - rect (“é’“”) - expimi - v(x.))* ~ 2nfoe(x. )
x=1 y=1
()

Due to the sampling process, the radar fast and slow times are also discrete, so (3)
can change into expression as:

$(Tp, tmg) = i Z o (x,y)-rect (ﬂ%) - exp |:j1ty (ip —1(x, y)q)2 —j2nfyt(x, y)q]

=1 y=1
2, P q=12,...,0;

I
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p
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where P is the samples of fast time and Q is the samples of slow time. 7(x,y) 4 18 the
echo delay of scatterer (x,y) at slow time t,, 4.

2.2 Lq Regularization Based SAR Imaging

After the data discretization in (4), we put all the scattering coefficients o(x,y) into a
column vector and change (4) into a more general matrix form as:

s =Hg+no (5)

CPOXMN

where s € CP2*! is the column vector of radar echo, H € is the observation

matrix, g € CMN>1 ig the column vector of scattering coefficients and ny € CPO s the
system noise. In (5) we have:

s = [s(ilatm,l)v .. ws(ilat"LQ)as(iZa tm.,l)' . '7S(223tm,Q)a . -as(iPJm.,l)a .. ws(iPa tm‘Q)]T
=[o(1,1),...,0(M,1),...,6(1,N),...a(M,N)|"

(6)
The observation matrix H can be expressed as:
4 N 4 . . 4 T
H= Ul(l‘l , lmJ), cee h([h tn17Q), h(lz, lm71). A h(lz, lm.’Q), Ceny h(tp, [m,l)a R h(lp, lm7Q)]
(7)

where h(t,, 1,,,) contains the radar phase terms and rectangular window terms in (4),
which can be written as:

~ ~ T
h(tp7tm,q) [ (lp7tmq7l ’ (tp7lmqa )w-wh(tpytm,mMN)]

)
(

R —1(x,y,1), )2 .
(tp, tm g, 1) = rect T © exp JTW< —f(x,y,l)q) —j2nfor(x, y, i),
i=1,2,....MN

(8)

From (8) we get the projection relationship between imaging scene g and radar
echo s. In CS-based SAR imaging, s is compressed with a sampling matrix
® e P2 r <« MN, so (5) can be change into:

= OHg + n; 9)

When g is a sparse scene, say, most of the scatters in g are zeros, the theory of CS
tells when and how it can be recovered from the above ill-posed linear system. If the
sensing matrix A = @H satisfies conditions like RIP [3], g can be exactly recovered
using the Lq (quasi-norm) (0 < ¢ < 1) regularization optimization:
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2= argmin{HSx - Ag||§ +)u||g||Z} (10)
g

where 4 > 0 is the regularization parameter.

The first term in objective function (10) is called a data fitting term, which cor-
responds to model (9), and represents the observation geometry. The second term is
called the regularization term regarding the behavior of the scene g. Regularization
parameter /. controls the trade-off between data-fidelity and reconstruction sparsity,
which plays a crucial role in the regularization optimization.

3 Regularization Parameter Determination Method

In this section we present a regularization parameter determination method using the
statistics of noise. We first introduce the concept of Noise Confidence Region
(NCR) and derive the upper boundary and lower boundary of NCR. We then present
our regularization parameter updating method by control the reconstruction error
residuals to obey a certain Gaussian distribution.

3.1 Noise Confidence Region Estimation

Note that the L2-norm term in (10) is under the assumption that the additive noise n; is
zero mean white Gaussian [9]. If g; denotes the reconstruction result at ith iteration,
then the reconstruction error residual Ar = s; — Ag at the end of ith iteration, ideally,
should obey a white Gaussian distribution. Assume we choose an inappropriate 4 that
make the reconstruction result remove not only the noise but also parts of noiseless
radar signal, then Ar will contain information that make its samples lager than white
Gaussian noise. Based on this idea, we use a quantitative measure that verifies the
similarity between the distribution of Ar and that of the noise.

Consider an additive noise random variable n with zero mean and finite variance o.
For any scalar value z, define a signature function g(z,n):

BN Ll <z
— ) = 11
m;g ), g(zn) {0 ] > 2 (11)

where m is the length of noise n. g(z,n) is equivalent to sorting the absolute value of
the noise elements #;. In this case, the mean and variance of g(z, n) can be expressed as:

E(g(zm)) = F(2)

1 (12)
Var(s(e.m) =~ P (1 - P()
where F(z) = 2¢(z/0) — 1 is the cumulative distribution function (CDF) of absolute
value of n, ¢(.) represents the CDF of Gaussian distribution. The NCR is a proper
confidence region around the noise signature. Due to the noise signature structure, the
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region is smaller than the corresponding confidence regions of the distribution of the
additive noise itself. Since the additive noise n, in radar system is zero mean white
Gaussian noise, for each z and a high confidence probability p, the upper boundary
H(z) and lower boundary L(z) of NCR can be derived using the Central Limit

Theorem [10]:
H(z) = F(z) + 0y /%F(z)(l _F2)
L(z) = F(z) — oy /%F(z)(l ~F(2))

where ¢ is a positive number that makes the probability p close to 1. In this case, if
g(z, nj) is between the upper and lower boundary, it means that n; has a Gaussian like
structure.

(13)

3.2 Regularization Parameter Updating

Figure 2 shows the NCR of residual Ar, under confidence probability p = 0.999 and
noise variance ¢ = 0.9409 (we add white Gaussian noise so that the SNR of radar
system is 0 dB). It can be seen that the upper boundary and lower boundary have
divided the (z,g(z,n)) space into three regions where the NCR in the middle. At the
end of each iteration, we calculated g(z, Ar;) and see whether g(z, Ar;) falls into NCR.
If g(z, Arj) falls into the region below NCR, it means that A is too big that the
regularization term in (10) has removed not only the noise but also parts of noiseless

- = = *lower bound
upper bound
mean of the residual |

Fig. 2. NSR of the residual Ar, the upper bound and the lower bound are under confidence
probability p = 0.999 with noise variance ¢ = 0.9409.
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radar signal. If g (z, Ar_,-) falls into the region upon NCR, it means that 4 is too small that
only a part of noises are removed.

Here we proposed a simple regularization parameter updating method that force
to moves toward NCR. We set a positive number o« > 1 and define ;. as the
regularization parameter in the next iteration:

P ’;  g(z,Ar;) € region upon NCR (14)
EAR Aifo g(z, Arj) € region below NCR

If g(z, Arj) falls into NCR, it means that the residual has a Gaussian like structure
and the updating algorithm stops.

4 Experiments

In this section, we demonstrate the validity of the proposed method. We first conduct a
simulation using single point scatterer to compare the reconstruction result. Table 1
lists the primary SAR parameters. Figure 3 shows the reconstruction results using Lq
(q = 1/2) regularization optimization under different regularization parameters. These
parameters are automatically chosen by our proposed method, start with 2 = 0.001 and
end with A =0.1438. We calculate the peak-to-sidelobe ratio (PSR) of different
reconstruction results. It can be seen that the PSR increases monotonically with the
update of 4, and the update stops when PSR is inf. The reconstruction result using the
updated A shows the absence of sidelobes as well as higher resolution than the result
using initial 4. Figure 4 shows the reconstruction results using Lq (q = 2/3) regular-
ization optimization, which get the same results.

Table 1. Parameters of SAR system and geometry.

Parameter Simulation | RADARSAT-1
Slant range of radar center | 50 km 1016.7 km
Radar center frequency 5000 MHz | 5300 MHz
Platform velocity 110 m/s 7062 m/s
Pulse repetition frequency | 175 Hz 1256.98 Hz
Pulse duration 2 us 41.75 ps
Sampling rate 100 MHz |32.317 MHz

Next we test the validity of the proposed method on real SAR data from
RADARSAT-1 in the fine mode-2 about Vancouver region. We applied our method to
reconstruct the region of English Bay, where 6 vessels are sparsely distributed. The
main radar parameters are shown in Table 1. Figure 5 shows the reconstruction results,
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Fig. 3. Reconstruction results of a single point scatterer using Lq (q = 1/2) regularization
optimization with different regularization parameters. (a) Imaging result with A = 0.0011,
PSR = 10.65 dB; (b) imaging result with 2 = 0.0038, PSR = 11.55 dB; (c) imaging result with
A =0.0127, PSR = 14.55 dB; (d) imaging result with A = 0.1438, PSR = inf dB;

where the traditional SAR imaging result via Range Doppler Algorithm (RDA) under
full sampling rate is shown in Fig. 5(a). Figure 5(b) shows the reconstructed result
using L(1/2) regularization under 4 = 0.0038 with 12.5% sampling rate than the
Nyquist rate. Figure 5(c) shows the reconstructed result using L(1/2) regularization
under the updated 4 = 0.01438 with 12.5% sampling rate using the proposed method.
Figure 6 shows the zoom in results of two vessels (in red boxes) in Fig. 5. It can be
seen from Figs. 5 and 6 that the proposed method reconstructs higher quality images
with reduced sidelobes at much lower sampling rate than traditional SAR imaging
method and Lq regularization optimization method with fixed parameter.
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Fig. 4. Reconstruction results of a single point scatterer using Lq (q = 2/3) regularization
optimization with different regularization parameters. (a) Imaging result with A = 0.0011,
PSR = 9.74 dB; (b) imaging result with 2 = 0.0011, PSR = 10.32 dB; (c) imaging result with
A =10.0428, PSR = 15.52 dB; (d) imaging result with A = 0.4833, PSR = inf dB;
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Fig. 5. Reconstructed results of RADARSAT-1 data. (a) The traditional radar image under the
full sampling data, (b) reconstructed result using L(1/2) regularization under 1 = 0.0038,
(c) reconstructed result using L(1/2) regularization under 4 = 0.1438. (Color figure online)
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Fig. 6. Zoom in results of two vessels (in red boxes) in Fig. 5. (a) The traditional radar image
under the full sampling data, (b) reconstructed result using L(1/2) regularization under
A =0.0038, (c) reconstructed result using L(1/2) regularization under A = 0.1438. (d)—(f)
imaging results of another vessel.

5 Conclusion

In this paper, we present a regularization parameter determination method based on the
properties of the additive noise. The proposed method is denoted by the noise confi-
dence region (NCR), and validates the statistical properties of the error residuals. At the
end of each iteration, the method categorizes the reconstruction result as well denoised,
partially denoised, and over-smoothed. The method then updates the parameters so that
the result falls into the well denoised region. The experiment results verify the validity
of the new method.
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