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Abstract. The micro-Doppler effect (m-D effect) provides unique signatures
for target discrimination and recognition. In this paper, we consider a solution to
the m-D parameter estimation. This method mainly consists of two procedures,
with the first being the radar returns decomposition to extract the m-D com-
ponents in Bessel domain. Then the parameter estimation issue is transformed as
a parametric sparse recovery solution. A parametric sparse dictionary, which
depends on m-D frequencies, is constructed according to the inherent property
of the m-D returns. Considering that the m-D frequency is unknown, the dis-
cretizing m-D frequency range for the parametric dictionary matrix is calculated
by the sinusoidal frequency modulated Fourier transform (SFMFT). In this
manner, the finer m-D frequency, initial phases, maximum Doppler amplitudes
and scattering coefficients are obtained by solving the sparse solution of the m-D
returns. The simulation results verify the effectiveness.
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1 Introduction

Micro-Doppler effects (m-D effects) depict targets’ refined movement features, and
provide the important information for target recognition and discrimination [1]. The
rotation, vibration of a target induces the time-varying Doppler modulation on the
received signals, which are most sinusoidal frequency-modulated (SFM) signals [2].
Hence, the parameters of the returned signals, including the scattering coefficients,
modulation amplitudes, modulation frequencies and initial phases, suggest significant
targets’ m-D features.
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Time-frequency analysis (TF analysis) provides locations of such non-stationary
signals in the TF plane, which has been widely utilized in m-D parameter estimation.
However, most classic TF analyses either suffer from cross-term interferences, or are
hardly to obtain the high resolution of time and frequency simultaneously [3]. Recently,
some parametric methods which decompose signals into some different domain, such as
the Bessel domain, are proposed and verified effective for the signal estimation and
separation [4, 5]. Moreover, the sinusoidal frequency modulated Fourier transform
(SFMFT) decomposes the phase term of a signal in the sinusoidal domain, so that the
modulation frequency can be estimated by its projections on different sinusoids [6].

However, based on the Shannon-Nyquist theory, the received signals suffer from
aliasing when the sampling frequency is less than twice of the maximum Doppler
frequency shift, which makes it fail to estimate the motion features. In recent years, the
compressive sensing (CS) technique is introduced to characterize the TF domain for
m-D signatures extraction, and it is proved to be a promising tool with high-resolution
[7–10]. CS theory supposes the sparsity of a signal in some transform domain, and the
signal will be recovered from the limited samples. As the received signals induced by
m-D are a sum of frequency modulated signals, they are sparse in TF domain [11]. As
the approach proposed in [12], m-D signals can be first demodulated into some sinu-
soids, and then be reconstructed by exploiting their sparse solution in the Fourier
domain. In [13], to extract accurate parameters, the demodulation procedure is con-
ducted on the basis of a CS reconstruction process, but the initial phase cannot be
obtained. In [14], the problem of m-D parameter estimation is transformed as a para-
metric sparse solution. It takes different m-D frequencies as the variables of the
parametric dictionary matrix, and the sparse signal is solved by the pruned orthogonal
matching pursuit (POMP) algorithm. Similarly, m-D signatures are extracted by
parametric sparse recovery and OMP algorithm in passive radar systems [15]. In these
methods, the m-D frequency is first being discretized as a frequency series. However,
the estimation results are very sensitive to the m-D frequency, and meanwhile, the prior
knowledge of the m-D frequency is unknown. In this case, the inaccurate division of
m-D frequency series will lead to wrong estimation results. On the other hand, the
wrong entries of the m-D frequency series are meaningless for estimation, which will
lead to large computation amount. Additionally, some translational components
induced by the bulk of non-rigid target or the scatters on the rotation axis, will make the
traditional sparse recovery-based methods invalid for m-D parameter estimation.

To solve these problems, an approach based on the SFMFT in conjunction with the
parametric sparse recovery and the k-resolution Fourier-Bessel (k-FB) series expansion
is proposed. The received signal is first decomposed into different orders of k-FB series
to extract the m-D signals of interest, and meanwhile, the phase shift ambiguity of the
extracted m-D signals is revised. Considering the m-D frequency is unknown, it is first
estimated coarsely by the SFMFT to provide a probable discretized frequency range for
the parametric matrix. In this manner, the m-D frequency, as well as the initial phases
and the modulation amplitudes are all discretized into series. The sparse representation
model is solved by the OMP algorithm, and the finer modulation frequency, initial
phases, modulation amplitudes and the scattering coefficients are obtained.
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The following parts of the paper are organized as follows. In Sect. 2, the back-
ground of m-D signals and some basic theory is introduced. In Sect. 3 the proposed
approach is described in details, while in Sect. 4 the simulation experimental results are
analyzed. Section 5 draws the conclusion.

2 Background

In this section, some background including the m-D signal model and the basic theory
of CS are briefly reviewed.

2.1 M-D Signal Model

The m-D effect is known as the time-varying Doppler modulations induced by the
micro-motion of a target or its parts. The basic mathematical description of the m-D
effect induced by rotation is discussed in this subsection.

The radar return of a target can be modeled as the signal reflected by a set of point
scatters on the target. In this case, we suppose that there exist K point scatters on the
target. Suppose that the target rotates with the angular frequency x. The modulations
induced by a rotation target consist of two parts: the m-D modulation induced by
scatters rotating around the rotation axis; and the Doppler modulation induced by
scatters on the rotation axis or the bulk of a non-rigid target. The received signal
induced by rotation after the translation compensation is presented as

s tð Þ ¼
XK
i¼1

ai exp j
4p
k

fDtþ di sin xtþ hið Þ½ �
� �

; t ¼ t1; � � � ; tM ð1Þ

where M denotes the signal sequence length, k is the radar wavelength and fD is the
Doppler modulation frequency. di is the distance between the rotation axis and the
scatter i in the LOS direction. ui and ai are the initial phase and the scattering coef-
ficient of scatter i, respectively. The Doppler frequency of scatter i can be given
according to the derivative of the phase term in [1] as:

fi tð Þ ¼ 2
k
fD þ dix sin xtþ hið Þ½ � ð2Þ

Note the fact that the rotation frequencies of all the scatters on one target are the
same, with the rotation radius, initial phases and scattering coefficients are different.
From (2) we can see that the translational component is different from that of the m-D
component. The Doppler frequency of the translational component is constant, while
the frequency of the m-D component is sinusoidal.

2.2 The CS Theory

The CS theory utilizes a signal’s sparsity, so that the discrete sampling can be obtained
under the sampling rate much less than the Nyquist sampling condition. In accordance
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with the CS theory, a signal can be recovered from the limited samples if it is sparse in
some domain. The classic CS theory is described as

s ¼ Wg ð3Þ

where s is an M � 1 observation vector, W is an M � N matrix, and g is an N � 1
sparse solution to be solved. The observation model in (3) can be solved under the
constraint conditions, and thus, the sparse signal can be recovered from the observation
vector by the following solution

ĝ ¼ argmin
g

gk k0 s:t: s�Wgk k22 \ e ð4Þ

where �k k0 and �k k2 denote the L0 norm and the L2 norm, respectively, and e is the
permitted error.

3 Parameter Estimation Method

As the modulation form of the translational component is different from that of the m-D
component, the translational component will destroy the inherent property of the m-D
signals, so that makes the sparse recovery based methods invalid. Hence, it requires an
approach for the extraction of the m-D components from the received signals. Then the
SFMFT and the parametric sparse recovery solution are adopted. The proposed
parameter estimation method is introduced in the following subsections in detail.

3.1 Extraction of M-D Components

The discrete form s nð Þ of the received signal in (1) with N samples is presented as

s nð Þ ¼
XK
i¼1

ai exp j pha nð Þ½ �; n ¼ 1; � � � ;N ð5Þ

where pha nð Þ ¼ 4p
k fDnþ di cos xnþ hið Þ½ � denotes the phase term.

As the discrete signals are mainly subjected to the problem of the phase shift
ambiguity [16], the phase shift ambiguity should be revised for the received signal.
Since the phase measurements are only possible in �p; pð Þ, the phase shift ambiguity
occurs when the total phase shift is more than 2p when sampling, which can be revised
by comparison of adjacent samples.

pharðnÞ ¼
phaðnÞ � 2p; phaðnÞ � phaðn� 1Þ[ p
phaðnÞþ 2p; pharðn� 1Þ � pharðnÞ[ p
phaðnÞ; pharðnÞ � pharðn� 1Þj j\p

8<
: ð6Þ

where i[ 1 and phar nð Þ denotes the difference of the real phase shift and the phase
shift measurement.
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After the phase shift ambiguity is revised, the m-D returns are extracted on the basis
of the Fourier-Bessel transform (FBT) and its related theories. A signal can be
decomposed into a weighted sum of Bessel functions by FBT [4]. Similar to the Fourier
transform and the Fourier series, FBT presents as the FB series within a finite interval.
For a better resolution, a resolution metric k is introduced into the traditional FB series
recently, which is called the k-FB series [5]. As the k-FB series has a one-to-one
relationship between the order of the series and the frequency of a signal, it is effective
for different signals separation overlapped in the TF domain.

Since the received signal s nð Þ is in the neighborhood of zero-frequency after the
translation compensation, the first several orders of the series correspond to the
translational component. Expanded the signal by k-FB series and eliminate the first
several orders of the series, the m-D signals sm�D nð Þ extracted from the radar returns
can be reconstructed as follows

sm�D nð Þ ¼
XM
m¼m0

XN
n¼1

CmJ0
km
kN

n

� �
ð7Þ

where J0 �ð Þ is the Bessel function of the zero order, km is the m th positive root of the
function J0 tð Þ ¼ 0, m0 is the maximum order of k-FB series corresponding to the
translational component, and M is the order corresponding to the pulse repetition
frequency (PRF). The series of order m in (7) can be calculated as

Cm ¼ 2PRF2

NJ1 kmð Þ½ �2
XN
n¼1

ns nð ÞJ0 km
kN

n

� �
ð8Þ

3.2 Parameter Estimation

Considering that the parameters of the extracted m-D signals are x; a; d; hf g, discretize
the candidates d; hf g in a certain range as d 2 d1; d2; � � � ; dPf g and
h2 h1; h2; � � � ; hQ

� �
, respectively. Then the received m-D signal can be presented as

s ¼ W xð Þg xð Þ ð9Þ

where s ¼ s 1ð Þ; s 2ð Þ; � � � ; s Nð Þ½ �T, g x̂ð Þ ¼ g 1ð Þ; g 2ð Þ; � � � ; g PQð Þ½ �T and W xð Þ is a
M � PQ dictionary matrix. Then the sparse solution g xð Þ can be obtained by

g xð Þ ¼ argmin
g x̂ð Þ

g xð Þk k0 s:t: s�W xð Þg xð Þk k22 � e ð10Þ

W xð Þ is constructed by the m-D signal’s intrinsic property

W xð Þ ¼ u 1;xð Þ; � � � ;u n;xð Þ; � � � ;u N;xð Þ½ �T ð11Þ
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where

u n;xð Þ ¼ u0 n;x; d1; h1ð Þ; � � � ;u0 n;x; d1; hPð Þ;u0 n;x; d2; h1ð Þ; � � � ;u0 n;x; dQ; hPð Þ½ �
ð12Þ

and

u0 n;x; dp; hq
� 	 ¼ exp j

4p
k
dp cos xnþ hq

� 	
 �
ð13Þ

As the error of the sparse recovery solution is more sensitive to x than d; hf g in (9),
serious recovery errors will be resulted in inaccurate or wrong x [14]. However,
without the prior knowledge of x, the discrete values of x will not be fine enough, so
that inaccurate even wrong estimation results will be obtained. Meanwhile, to avoid the
unnecessary computation amount of wrong x in the sparse recovery process, the
SFMFT is first utilized to obtain a coarse estimation of x, which provides the candidate
x for a correct division range. In this manner, more accurate results of x; a; d; hf g by
the sparse recovery technique will be obtained.

SFMFT decomposes the modulation frequency x on different sinusoidal basis, and
the spectrum is obtained by the projections, referred to as the coefficient ei on the
different sinusoidal basis. The discrete SFMFT [6] of the signal sm�D nð Þ is presented as

sm�D nð Þ ¼
XN�1

i¼0
ei �h i exp j exp jx0nið Þ½ �

D E
ð14Þ

where the coefficient ei indicates the modulation spectrum of the signal, and x0 ¼
2p=N is the modulation frequency unit. Coefficient ei can be calculated as

ei ¼ sm�D nð Þ; exp j exp jx0nið Þ½ �h ih i ¼ 1
N

XN�1

n¼0

ln x nð Þf g � �j exp �jx0nið Þ½ � ð15Þ

The frequency estimation of x is obtained by ei of the maximum value. Suppose
that the maximum coefficient ei locates at i ¼ i0. Then the estimation of the rotation
angular frequency is i0x0, and the discrete range of the candidate x is set as
i0 � 1ð Þx0; i0 þ 1ð Þx0½ �.
One of the solutions of (10) is the OMP algorithm [17]. It makes the dictionary

matrix orthogonal by the Schmidt orthogonalization method. And then the process of
the signal decomposition is iterated on the over-complete orthogonal basis. In each
round of iteration, the most matched atom is found as the sparse approximation of the
signal. The OMP algorithm is widely used in sparse signal processing because of its
advances in the decomposition efficiency. The OMP algorithm is selected to solve (10).
For clarity, the m-D parameter estimation algorithm is stated as follows.
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...

4 Simulation Experiments

Suppose that the PRF of the radar is 1024 Hz, and with 1024 samples being collected.
Considering that a target rotates with the angular velocity x ¼ 38:96 rad/s with three
scatters on it. One scatter locates at the rotation axis and thus induces a translational
component. The rotation radiuses of other two scatters are 4 mm and 44 mm, the initial
phases are 2.09 rad and 4.18 rad, and the scattering coefficients are 0.7 and 1,
respectively. The received signal of the target under SNR = 12 dB is presented in
Fig. 1(a).
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From Fig. 1(a) we can see that the scatter with small rotation radius is almost
contaminated by the translational component. The TF analysis of extracted the m-D
signal is shown in Fig. 1(b), where the two m-D components can be both recognized.
The m-D signals are extracted when the order is selected as m0 ¼ 10 and k ¼ 2 in (7).
After the m-D component extraction, the spectrum of the m-D frequency calculated by
SFMFT is shown in Fig. 2.

It is shown in Fig. 2 that the extracted m-D components only contain a single
modulation frequency at around 37:7 rad=s. The candidate x is divided into the series
of 40 entries between 31:42; 43:98½ �, and the candidates d; hf g of the dictionary matrix
are divided into 25� 30. After the iteration, the estimation results of d; hf g and a are
shown in Fig. 3.
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Fig. 1. TF analysis of the received signals. (a) The original received signal, (b) The extracted
m-D signal.
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Fig. 2. The SFMFT spectrum of the m-D frequency.
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As denoted in Fig. 3(a), the results of the two groups of the estimated parameters
are d1; h1f g ¼ 4 mm; 2:094 radf g and d2; h2f g ¼ 44 mm; 4:189 radf g. The estimated
scattering coefficients are a1; a2f g ¼ 0:7049; 1:006f g, which reflect on the magnitude
of the pinnacles. The estimated m-D angular frequency is 38:96 rad=s. The estimation
results all agree well with the true values. On contrast, in Fig. 3(b), there are some
interference pinnacles in the estimation results of the original received signal. The
interference pinnacles are most in the location where the modulation amplitude
approaches to zero. It agrees with (1) that the scatter on the rotation axis whose rotation
radius is d ¼ 0.

5 Conclusion

A novel approach of the m-D parameter estimation is proposed. We consider the m-D
received signals containing both the m-D components and the translational compo-
nents, which are invalid for the traditional sparse recovery based methods. The m-D
components are first extracted in the procedure of signal decomposition and recon-
struction by the k-FB series expansion. Then for finer estimation results, the SFMFT is
adopted to provide the discretized modulation frequency range for parametric sparse
recovery. By these means, interference pinnacles exist in traditional sparse recovery
based methods are eliminated, and the accurate estimation results are obtained
simultaneously.
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