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Abstract. This paper considers classification of diverse traffic types in Internet
of Things (IoT) based on importance of data rate, packet size and proposes a
priority-based probabilistic packet scheduling strategy for efficient packet
transmission. Reduction of peak resource usage, dynamic control of service rate
corresponding to arrival rate and QoS buffer management are few main factors
considered to develop this strategy. By calculating percentage of link bandwidth
required for prioritized traffic in each cycle, we provide quality of service
(QoS) to real time traffic in IoT and non-IoT applications. Different experiments
including MPEG traffic traces and Poisson traffic are conducted to verify the
proposed scheduler. Also, performance of scheduler for both IoT and Non-IoT
applications is compared for different data rates. We observe that the proposed
packet scheduler satisfies QoS requirements for both IoT and non-IoT traffic.
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1 Introduction

IoT devices offer numerous novel real world services which result in heterogeneous
QoS constraints and brings forward the requirement of a scheduling scheme to achieve
overall optimum performance. Current studies on classification and scheduling of IoT
services [1–3] rarely considers size of packets, its data rate, type of packets and
comparison with Non-IoT data. Also, stringent delay constraints and high bandwidth
requirements of multi-user video transmission applications [4], and to provide adequate
transmission opportunities to all video/image senders before their tolerable delay
deadlines is a longstanding research problem in IoT. This paper considers some of
these issues to investigate optimal approach for assigning scheduling priority levels and
allocates required bandwidth.
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IoT has a broad research scope in several areas like healthcare, smart environments,
structural health monitoring and transportation, etc. [1, 5]. Applications like structural
health checking generally needs unfailing information release from every node to the
destination node. Furthermore, the QoS necessity of traffic blocking is comparatively
rigorous in terms of throughput and delay because of the association of critical con-
tinuous data. In each of these applications, lightweight smart objects are active par-
ticipants which are capable of sensing different incidents and communicating it to
various other devices. Current methods do not offer acceptable solutions for delay
sensitive applications. Few slot allocation policies like rate adaptive round robin or
round robin provide assured QoS but the allotment of the current slot is not based on
the allotment of the previous slots and these policies are hence considered to be
stationary.

In this paper, a policy is developed to consider immediate release of delay sensitive
data in IoT applications. We are addressing the scheduling scheme for the packets to
provide QoS services for different class of services. Policy is actively calculating the
number of packets to be scheduled in current cycle from high priority queue based on
increase or decrease in its average queue length in consecutive cycles. This results in
assuring adequate allotment of bandwidth to each service class by avoiding excess
allocation always to the high priority class. After assigning required bandwidth to high
priority class, remaining bandwidth can be assigned to low priority class. The major
contributions of this paper are:

• Classifying and scheduling packets based on its size, type and data rates to achieve
less transmission delay for each priority class

• Analyzing theoretically with Markov Chain model and simulation experiment with
MATLAB R2013 to explore and study the waiting time of packets for various
priority-queuing schemes and discover out the optimal one

• Comparison of model for IoT and Non-IoT applications.

The rest of the paper is organized as follows. Few recent investigated works are
discussed in Sect. 2. Probabilistic model and its assumptions are presented in Sect. 3.
Section 4 discusses the detailed analysis. Simulation results are presented and dis-
cussed in Sect. 5. Finally, conclusion and future work is included in Sect. 6.

2 Related Work

Recently, IoT has attracted researchers from both industry and academia. Current
research explores into various phases of IoT such as service oriented architecture based
IoT [6], Web of Things [7], applications and clarifications related to IoT [8] and
therefore various issues can be investigated. Many authors [9–13] presented surveys on
IoT vision, IoT related projects, IoT enabling technologies, research issues like privacy,
trust, energy consumption and resource insufficiency with certain application areas in
IoT. Some of them are very important issues which provide useful discussion about
QoS requirements but design of QoS models to provide priority to emergency appli-
cations are not extensively discussed.
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Klepec and Kos [11] proposed a priority model with two queues and presented
packet transit time behavior for a delay susceptible application for which bandwidth
limit should be the least. The model is straightforward; the exploitation of higher
priority was shown at the price of more packet losses for low priority data. Moreover,
in order to analyze and monitor energy efficiency [14]; network topologies; issues
related to performance of the network [15]; and the accessibility of bandwidth; a
number of new methods have been devised. A buffer sharing scheme for resource
distribution in wireless local area networks (WLAN’s) under diverse traffic conditions
is discussed in [16]. The results show that for heterogeneous traffic loads, transmission
opportunities are not equally allocated by 802.11. They also showed that large buffer
can help in providing this equality but at the expense of increased delay. The solution
to delay sensitive applications is not efficient as discussed in the above studies. To
guarantee instantaneous communication with no packet loss, queueing delay and
specifically to address the delay critical applications, an efficient packet scheduling
scheme with service priorities becomes necessary.

3 Probabilistic Model and Its Assumptions

The probabilistic representation and few hypotheses considered are discussed in this
section. In the projected model, it is assumed that the data packets are categorized into
prioritized (critical data) and non-prioritized (non critical data) traffic and is accumu-
lated in two separate queues. The scheduler calculates the current departure packets
using number of departure packets in the previous slot and the number of arrival
packets in the current slot. It calculates a weighting coefficient for each queue which
represents average number of packets that can be scheduled from the queue before
moving to the next queue. The idea is based on weighted round robin scheduler. In this,
the system serves each queue in a round robin manner and the calculated dynamic
weights are assigned. Scheduling is executed at the beginning of each cycle. The
scheduling mechanism differentiates the services based on the priority, by measuring
the probability of traffic increased at the current time slot from the previous time slot,
predicts the number of packets to be scheduled at the current time slot and the amount
of bandwidth to be allocated to each service.

The configuration of the node and scheduling system is given in Fig. 1. Consider
that the prioritized traffic queue has a maximum size of B1 and average buffer size of
Pavg and non-prioritized queue has a maximum size of B2. It is assumed that packets
arrive separately for all service classes follow a Poisson procedure with a mean rate of
arriving packets per cycle as k ¼Pimax

i¼0 i:PðiÞ, the same is depicted in Fig. 1, where P(i)
denotes the probability of i packets arriving in one round and imax specifies the upper
limit to packets arriving. Let k1; kHQ; kHL are the packets arrived, accumulated in the
buffer and dropped from the prioritized queue respectively, and k2; kLQ; kLL are
quantity of packets arrived, accumulated in the queue and dropped from non-prioritized
queue respectively. The system consists of N cycles, each of which is further parti-
tioned into different time slots. Here, every time slot carries a packet of variable size.
Now, the system model formulation to compute the average quantity of packet serviced
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Tn
c in cycle c for nth class can be designed. The corresponding buffer queue size of the

current cycle c is calculated as:

qnc ¼ qnc�1 � Dn
c þ anc ð1Þ

where anc indicates quantity of packets which arrives in the nth queue during cycle c; Dn
c

signifies the quantity of packets leaving from nth queue at cycle c and qnc�1 represents
quantity of packets stored in the queue during cycle (c − 1). The quantity of packets
served in cycle c can be given as:

Dn
c ¼ min qnc ; b

n
c

� � ð2Þ

where, bnc is the quantity of packets which can be served according to the bandwidth
availability and computed based on the anticipated method for nth queue during cycle
c (details given later). The respective queue is picked up in a round robin manner, thus
n can be computed as:

n ¼ n' mod 2ð Þþ 1 ð3Þ

where, n' represents the previous class selected, n = 1 represents the prioritized service
and n = 2 represents the non-prioritized service queue. Probability of average queue
length of prioritized queue is calculated as:

PavgðcÞ ¼ 0:01 � Pavgðc� 1Þþ 1� 0:01ð Þ � PðqncÞ ð4Þ

where PavgðcÞ is the probability of average queue size in current cycle, Pavg c� 1ð Þ is
the probability of average queue size in previous cycle and PðqncÞ is the probability of
instantaneous queue size at current cycle. The sum of the packets serviced in one round
can be computed as: Tn

c ¼
P2

n¼1 D
n
c :H ¼ PN

c¼1 D
1
c and L ¼ PN

c¼1 D
2
c are sum of

prioritized and non-prioritized packets departed in N cycles where c = 1,2 …N.

Fig. 1. System model
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To dynamically allocates weights with standard scale values, prioritized queue is
assigned with two thresholds Tmin = 0.083 and Tmax = 0.3667 which act as indicators
to achieve desired and acceptable QoS parameters. At these threshold values, the least
blocking probability values for the considered simulation scenario are obtained.
Assume p is the probability of serving prioritized packets and q is the probability of
serving the non-prioritized packets. As, only two service queues are taken, the prob-
ability of serving the non prioritized packets can be given by q = 1 − p. Probability
p can be further distinguished based on proposed scheduler into three different cases:

p ¼
p1 for 0� Pavg �Tmin

p2 for Tmin\Pavg\Tmax

p3 for B1[ Pavg �Tmax

8<
: ð5Þ

where, p1 = 0.3, is the probability of weight allocated to prioritized packets when the
probability of average queue length Pavg is between 0 and Tmin. This value of p1 is
chosen to provide minimum bandwidth to prioritized queue irrespective of the arrival
rate. The p2 is the probability of weight allocated to prioritized packets when average
queue length increases and lies between Tmin and Tmax and is calculated by Eq. (6) and
p3 = 0.7 to 0.9 is the probability of weight allocated to prioritized packets when the
average queue length increases beyond Tmax. The value of p3 are chosen to limit
maximum bandwidth allotted to prioritized queue and to provide some processing of
non-prioritized queue and reduce its blocking probability while providing guaranteed
service to prioritized queue in each cycle.

p2 ¼ p'þðPavgðcÞ � Pavgðc� 1ÞÞ: 0:3
ðTmax � TminÞ ð6Þ

where p
0
the probability of weight assigned to prioritized queue in previous cycle.

PavgðcÞ � Pavgðc� 1Þ is the change in probability of average queue (increase or
decrease) in consecutive cycles. Eq. (5) shows a linear relationship between probability
of weights allocated to priority service and probability of average queue size.

4 Model Analysis

The system is depicted by a probabilistic Markov Chain model. Since the investiga-
tional process of all transitional nodes is similar, a node is picked up arbitrarily to
examine the algorithm because this scheduling algorithm can independently work in
each router to schedule packets based on arrival rate. Knowing the scheduling time
spent in one node and total nodes existing in the path chosen by the routing algorithm
for a particular topology, the processing delay can be found. The blocking probability
of prioritized and non-prioritized class can be calculated. The Markov chain model
formulation to compute the average packets scheduled or departures Tn

c in cycle c for
nth service class is as follows.
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Figures 2(a), (b) and (c) presents the state transition diagrams for state (x, y), where
(x, y) represents a state in which x non-prioritized packets and y average prioritized
packets are stored in their respective queues. P(x, y) is the probability of the system
being in state (x, y). Four cases are discussed here: (i) when x < B2 and y < B1 (Fig. 2
(a)) (ii) when x � B2 and y < B1 (Fig. 2(b)) (iii) when x < B2 & y � B1. (Figure 2
(c)) (iv) when x � B2 and y � B1. Based on Figs. 2(a), (b) and (c), the balance
equations for state (x, y) are computed as:

pk1 þ 1� pð Þk2 þ yl1 þ xl2ð ÞPx;y � pk1Px;y�1 1� pð Þk2Px�1;y

� yþ 1ð Þl1Px;yþ 1 � xþ 1ð Þl2Pxþ 1;y ¼ 0
ð7Þ

pk1 þ yl1 þ xl2ð ÞPx;y � pk1Px;y�1 � 1� pð Þk2Px�1;y � yþ 1ð Þl1Px;yþ 1 ¼ 0 ð8Þ

ð1� pÞk2 þ yl1 þ xl2ð ÞPx;y � pk1Px;y�1 � 1� pð Þk2Px�1;y � xþ 1ð Þl2Pxþ 1;y ¼ 0

ð9Þ

In Fig. 2(a), when non-prioritized queue is filled, the new coming packets will be
dropped which is shown by returning back to the same state. Similarly, as soon as the
prioritized queue is filled then those incoming packets are dropped as shown in Fig. 2
(b). To obtain the blocking probabilities of service classes, the above equations need to
be solved to obtain state probabilities P(x, y). So, consider a non-complex system to
solve blocking probability. The corresponding state transition diagram is shown in
Fig. 2(d). To make the computation easier, consider l1 = l2 = l where the service
rate l is taken as the average service rate of two traffic. In the state diagram, if the
prioritized queue is full, p(1, 1) state is not considered instead it is shown as loss of k2.
If non- prioritized queue is full, then p(0, 1) state is considered as p(1, 1) state. The
balance equations for the structure are re-written based on Eqs. (7), (8) and (9). The
blocking probability for a non-complex system [17] is derived and then the result is
extended for a complex system.

p1k1P 0;0ð Þ þ p3k1P 1;0ð Þ ¼ l1P 0;1ð Þ ð10Þ

q1k2P 0;0ð Þ ¼ ðl2 þ p3k1ÞP 1;0ð Þ ð11Þ

P 0;0ð Þ þ P 1;0ð Þ þ P 0;1ð Þ ¼ 1 ð12Þ

From Eq. (10)

p3k1P 1;0ð Þ ¼ l1P 0;1ð Þ � p1k1P 0;0ð Þ

Substituting in Eq. (11)

q1k2P 0;0ð Þ ¼ lðP 0;1ð Þ þ P 1;0ð ÞÞ � p1k1P 0;0ð Þ
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From Eq. (12)

P 1;0ð Þ þ P 0;1ð Þ ¼ 1� P 0;0ð Þ

Therefore,

q1k2P 0;0ð Þ ¼ lð1� P 0;0ð ÞÞ � p1k1P 0;0ð Þ

l ¼ P 0;0ð Þ½q1k2 þ lþ p1k1�

P 0;0ð Þ ¼ l
½p1k1 þ q1k2 þ l�

Fig. 2. (a) when x < B2 & y < B1 (b) when x � B2 & y < B1 (c) when x < B2 & y � B1
(d) State transition diagram of a single-channel system for proposed scheme
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Substituting P 0;0ð Þ in Eq. (11), we get:

P 1;0ð Þ ¼
q1k2�l

½ðp1k1 þ q1k2 þ lÞðlþ p3k1Þ�

Substituting P 0;0ð Þ & P 1;0ð Þ in Eq. (10), we have:

lP 0;1ð Þ ¼ p1k1 � l
ðp1k1 þ q1k2 þ lÞ þ

q1k2l � p3k1
½ðp1k1 þ q1k2 þ lÞðlþ p3k1Þ�

P 0;1ð Þ ¼ k1½lp1 þ p1p3k1 þ q1p3k2�
ðp1k1 þ q1k2 þ lÞðlþ p3k1Þ

ð13Þ

The blocking probabilities can be calculated as:

1. For the Prioritized queue:

Blockprob1 ¼ P 0;1ð Þ þ 1� pð ÞP 1;0ð Þ ð14Þ

which evidently involves two parts: (i) the probability that prioritized packet
reaches state (0, 1) and is lost. (ii) the probability that a prioritized packet reaches
state (1, 0) but due to probability 1� pð Þ, it is lost.

2. For Non-Prioritized queue:

Blockprob2 ¼ P 0;1ð Þ þ P 1;0ð Þ
� �þ k1

k2
pP 1;0ð Þ ð15Þ

This probability can also be considered as consisting of two parts: (i) the probability
that a low priority packet arrives either at state (0, 1) or (1, 0) and is getting
dropped; (ii) The probability that a non-prioritized packet arrives at state (1, 0) and
is getting lost due to probability p.

5 Simulation Results and Analysis

In this section, we present the simulation results to validate the efficiency of the
proposed scheme and to prove that it can support service differentiation. The simulation
results are plotted using MatLab R2013b. We have conducted three experiments to
investigate the scheduler efficacy. In the first experiment, high priority packets are
taken as MPEG traces and low priority packets as Poisson traffic with variable size and
under different system loads. In the second experiment, for both high and low priority,
Poisson traffic with variable size packets is considered. Third experiment compares IoT
and Non-IoT cases and tests the scheduler working when very large packet sizes with
high data rate for high priority class arrives as Non-IoT data. Extensive simulation has
been conducted to test the scheduler effectiveness for IoT traffic under different data
rates. Buffer sizes for both high priority and low priority queues are taken as 10. Details
of simulation scenario are given in Table 1.
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5.1 Impact of p on Blocking Probability

Figure 3(a) shows blocking probability between two classes against increasing value of
probability p from p1 to p2 and then to p3, in Exp1 and Exp2 with third data rate. We
can observe that if value of p increases, blocking probability of the high priority
packets decreases and for low priority it increases. So, the required service differen-
tiation can be achieved by adjusting p according to the tolerable blocking probability.

It can be observed that due to this scheduling scheme there is a continuous decrease
in the high priority blocking probability and simultaneous increase in blocking prob-
ability of low priority traffic. This is under the condition where prioritized and
non-prioritized packet load is continuously increasing. Prioritized packets priority
(in terms of bandwidth allocation) keeps on increasing as probability p increases from
p1 to p2 and then to p3. From the analysis, for Exp1 and Exp2, it can be easily verified
that if bandwidth provided to high priority is greater than or equal to 90%, then in both
experiments (Fig. 3(a)), blocking probability is similar for high and low priority ser-
vices. For bandwidth less than 90% for high priority traffic, blocking probability
increases to 1%. Although the packet sizes for high priority packets in Exp1 is of
bigger size than Exp2 for IoT but it gets compensated with the higher bandwidth
provided by the scheduler.

Figure 3(b) shows impact of probability p on blocking probability for Exp3 for
non-IoT traffic. We have considered very high data rate and packet sizes in Exp3. We
verified our scheduler to test its efficacy under the condition when variable and big
packet of sizes of 136 bytes to 424536 bytes is transferred as high priority packets. It
can be verified that for high and low priority traffic, blocking probability for non-IoT is
slightly increased as compared to IoT traffic due to its high data rate and packet size. As
compared to IoT cases, in non-IoT the blocking probability is 0.05% more for the
bandwidth greater than 90% for high priority traffic. However, for the bandwidth less
than 90% for high priority traffic, the blocking probability increases to 1% even in
non-IoT traffic.

Table 1. Traffic adopted for conducting experiment

Parameters IoT traffic (Exp1) IoT Traffic (Exp2) Non-IoT traffic (Exp3)

Service
type

High priority Low priority High priority Low priority High priority Low priority

Traffic
type

MPEG-4 Poisson Poisson Poisson MPEG-4 Poisson

Packet
size in
bytes

136 to 1000 50 to 702 50 to 702 50 to 702 136 to 424536 50 to 702

Number of
flows

2 flows at same time 2 flows at same time 2 flows at the same time

First
datarate

36.8 Kbps to
112.3 Kbps

73.36 Kbps to
203.3 Kbps

0.64 Kbps to
84.3 Kbps

66.8 Kbps to
107.52 Kbps

32.6 Kbps to
50.5 Mbps

358.8 Kbps
to 475 Kbps

Second
datarate

21.7 Kbps to
89.2 Kbps

64 Kbps to
175 Kbps

0.32 Kbps to
82.96 Kbps

55.3 Kbps to
88.7 Kbps

21.7 Kbps to
40 Mbps

277.5 Kbps
to 300 Kbps

Third
datarate

16 Kbps to
64 Kbps

45 Kbps to
164 Kbps

0.20 Kbps to
65 Kbps

45.4 Kbps to
64 Kbps

21.7 Kbps to
32 Mbps

160.6 Kbps
to 250 Kbps
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5.2 Impact of Different Data Rates on Average Blocking Probability

Figures 4(a), (b) and (c) describes average blocking probability of high and low pri-
ority traffic with different data rates in Exp1, Exp2 and Exp3 respectively. We observe
that with Exp1 blocking probability decreases gradually for high priority traffic as
compared to Exp2. In Exp2 blocking probability decreases at a faster rate in the
beginning for prioritized packets and then becomes constant. This is due to the reason
of comparatively bigger packet sizes and more data rate taken in Exp1 as compared to
Exp2. In both experiments, when data rate is less, then average blocking probability is
also less. Improvement for non-prioritized packets can be seen for less data rate. Here
value of p3 is 0.9. In Exp3 (Fig. 4(c)) also when data rate for non-IoT traffic is high
(first data rate) its blocking probability is more. If data rate is reduced, blocking
probability is also reduced for high priority traffic.

5.3 Comparison of Average Blocking Probability in Exp1&2 and Exp1&3

Figures 5(a) and (b) shows the average blocking probability of high and low priority
traffic for both Exp1 with Exp2 and Exp1 with Exp3 respectively. For only IoT traffic
with different data rates, as shown in Fig. 5(a); we observe that if packet size of
prioritized traffic is reduced (Exp2) or if data rate is reduced; the average blocking
probability of both prioritized and non-prioritized traffic is reduced. This implies that
the length of the packet size can also play an important role in analyzing the perfor-
mance of any model. Therefore, a smaller size of packet would be considered for better
performance. Figure 5(b) compares IoT and non-IoT cases. It is observed that for the
non-IoT traffic, the average blocking probability for both high and low priority traffic is
more than IoT traffic because of high data rate of non-IoT applications. Table 2 clearly
explains impact of increasing probability p on blocking probability of high and low

Fig. 3. Blocking probability of high and low priority traffic with different p3 values in (a) Exp1
& Exp2 (b) Exp3
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Fig. 4. Average blocking probability of high and low priority traffic for different data rates in
(a) Exp1 (b) Exp2 (c) average blocking probability of high and low priority traffic with different
data rates in Exp3

Fig. 5. Average blocking probability of high and low priority traffic with different p3 values in
(a) Exp1 and Exp2 (b) IoT (Exp1) and Non-IoT (Exp3)
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priority traffic. In all three cases with decrease in blocking probability of high priority
emergency traffic, there is simultaneous increase in low priority blocking probability
values which proves that the dynamic scheduling scheme is effective in achieving
adjustable service differentiation in IoT and non-IoT applications.

6 Conclusion

A simple and flexible probabilistic scheme has been proposed to offer service differ-
entiation and to provide QoS to emergency applications in IoT. Analytical and simu-
lation results showed that the dynamic scheduling scheme is effective in achieving
adjustable service differentiation in IoT and non-IoT applications where large amount
of data needs to be transferred continuously at low rate and high rate respectively for
long period of time. Also, if any emergency traffic needs to be given priority, this
scheduler reduces blocking probability even in the case of congested network. The
proposed scheme is tested for variable size packets with different data rates and the
expected results are obtained. We also verified that the scheduler satisfies QoS
requirements in both IoT and Non-IoT applications.
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