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Abstract. In order to meet QoS demands from customers, currently,
ISPs over-provision capacity. Networks need to continuously monitor
performance metrics, such as bandwidth, packet loss etc., in order to
quickly adapt forwarding rules in response to changes in the workload.
The packet loss metric is also required by network administrators and
ISPs to identify clusters in network that are vulnerable to congestion.
However, the existing solutions either require special instrumentation of
the network or impose significant measurement overhead.

Software-Defined Networking (SDN), an emerging paradigm in net-
working advocates separation of the data plane and the control plane,
separating the network’s control logic from the underlying routers and
switches, leaving a logically centralized software program to control the
behavior of the entire network, and introducing network programma-
bility. Further, OpenFlow allows to implement fine-grained Traffic Engi-
neering (TE) and provides flexibility to determine and enforce end-to-end
QoS parameters.

In this paper, we present an approach for monitoring and measuring
online per-flow as well as per-port packet loss statistics in SDN. The con-
troller polls all the switches of the network periodically for port and flow
statistics via OpenFlow 1.3 multipart messages. The OpenFlow compli-
ant switches send cumulative statistics of sent and received packets to the
controller that includes raw packets (control, non-user generated packets
responsible for network management); which, although not being part of
the end-to-end data traffic, get counted and act as noise in the statistics.
The proposed method takes into account the effect of raw packets and
thus, hamper the accuracy of methods.

Other implementations propose approaches for per-flow packet loss
only. We also take into account the effect of raw packets (control, non-
user generated packets) which makes our packet loss estimation more
accurate than other implementations. We also present a study of extrap-
olation techniques for predicting packet loss within poll interval.
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1 Introduction

Software-Defined Networking (SDN) along with OpenFlow [1] has inspired both
academia and industry to test new ideas in fields of customized architecture, dif-
ferent algorithms, novel protocols, especially network status monitoring making
enhanced Quality of service (QoS) possible.

Packet loss is one of the significant performance metrics used to determine
QoS and in network diagnostics. Packet loss due to congestion is a fundamen-
tal issue in modern day networks for both network researchers and network
operators.

There are various approaches to monitoring the network. The two common
approaches are the passive and active approaches. The passive approaches do not
increase the traffic on the network for the measurements, but rely on installation
of devices that watch the traffic as it passes by. This may require large invest-
ments. Flowsense [2] proposes a passive push based monitoring method using
control messages sent by switches to the controller to estimate network metrics.

The active approach injects test packets into the network or sends packets to
servers and applications to monitor the network. The benefit is that it can be run
from virtually anywhere in the network and it gives an end to end perspective
of the network behaviour; although it introduces additional network load which
affects the network and therefore influences the accuracy of the measurements.

In this paper, we present an approach for monitoring and measuring online
per-flow and per-port packet loss and its comparison with some of the novel
methods for measuring packet loss proposed for SDN and OpenFlow [1] networks.
Other implementations propose approaches for per-flow packet loss only and not
for per-port packet loss. This can be utilized by network administrators and ISPs
to identify clusters in large network that are vulnerable to congestion.

We compare the accuracy for TCP & UDP packets and for networks having
single and multiple flows. We discuss why polling switches for flow and port
statistics in linear way is better than other ways such as round robin, last switch,
per-flow etc. We also explore how accurate extrapolation techniques are, for
predicting packet loss within poll interval.

Rest of the paper is divided into Related Work, Network Model and Archi-
tecture, Proposed Approach, Experimental Setups, Results, Future Work and
Conclusion.

2 Background and Related Work

Flowsense [2] uses control messages sent by switches to the controller to estimate
network metrics. But its estimation is far from the actual value and it works well
only when there is a large number of small duration flows. It cannot capture
traffic bursts if they do not coincide with another flow’s expiry.

OpenNetMon [3] is a OpenFlow controller module that monitors per-flow
QoS metrics such as latency, throughput, delay and packet loss by polling flow
source and destination switches. Polling is done for every path between every
node pairs to be monitored and it is adaptively changed based on new flows’
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arrivals. But the controller does not know to find new paths based on real-time
data. Since the monitoring targets are only limited to edge switches, it is difficult
to obtain detailed flow statistics on other switches.

OpenTM [4] presents a heuristics-based monitoring method wherein it uses
the routing information learned from the OpenFlow controller to intelligently
choose the switches from which to obtain flow statistics, thus reducing the load on
switching elements and improving the monitoring accuracy. However, constant
polling involves considerable overhead.

OpenSketch [5], proposes a new SDN based monitoring architecture and a
new OSDN protocol. This, however, requires an upgrade or replacement of all
network nodes. Furthermore, standardization of a new protocol has been a long
and tedious task.

PayLess [6] is a query-based monitoring framework for SDN which performs
highly accurate information gathering in real-time without incurring significant
network overhead. To achieve this goal, instead of letting controller continu-
ously polling switches, an adaptive scheduling algorithm for polling is proposed
to achieve the same level of accuracy as continuous polling with much less com-
munication overhead.

3 Network Model and Architecture

First of all we explain the basic network model and the architecture used. The
network is emulated using MiniNet Network Emulator [7] which runs a collec-
tion of virtual end-hosts, switches, routers, and links on a single Linux kernel.
Furthermore, it allows us to create many custom topologies and emulate some
link parameters like a real Ethernet interface, e.g., link speed, packet loss, and
delay.

We use SDN enabled (i.e. OpenFlow [1] compliant) OpenVSwitch [8] switches
and Ryu [9] controller to handle their control plane. We emulate the network
topology using L2 learning switches wherein the switches examine each packet
and learn the source-port mapping. Thereafter, the source MAC address gets
associated with the port. If the destination of the packet is already associated
with some port, the packet is sent to the given port, else it is be flooded on all
ports of the switch.

Our code sits at the controller and computes the packet loss for the network.
We use the controller to request the switches for port and flow statistics via
the OpenFlow protocol 1.3. This is done periodically every k seconds by issuing
PortStatsRequest and FlowStatsRequest requests. So network overhead involved
is 2n messages, where n is the number of switches in the network for every k
seconds.

We use tc tool of queueing discipline (also called qdisc) part of Ubuntu ker-
nel’s traffic control module to measure actual packet loss from switches emulated
using MiniNet. MiniNet also uses qdisc internally to emulate link’s properties
such as bandwidth, delay etc. and manipulate other traffic settings. Therefore,
qdisc can provide true packet loss statistics that can be used for comparison.
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Fig. 1. Base model

We use iperf2 [10] which is a traffic generation tool that allows the user
to experiment with different TCP and UDP parameters to see how they affect
network performance. We also use Distributed Internet Traffic generator D-ITG
[11] to generate bursty traffic to test extrapolation techniques.

We define the base model of our system consisting of two switches s1 and
s2, connected by a link of bandwidth B. There is a direct logical link from each
switch to the controller Cn. We identify a flow by 4-tuple: in port, out port,
source MAC address and destination MAC address (Fig. 1).

Our model network consists of multiple such switches connected together in
a various topologies with the link distances equal for all. The end switches are
connected to hosts. We assume the switches and the hosts to be homogenous.
One of the hosts acts as an iperf server and the other as iperf client, while
running the experiment. The bandwidths for the links are variable which is why
packet loss is expected to happen at some links in the network.

4 Proposed Approach

In this section we present our approach to estimate online packet loss, which is
divided into following stages: 1. estimation of raw packets, 2. gathering port and
flow statistics, 3. real time estimation, 4. extrapolation within poll interval.

4.1 Estimation of Raw Packets

We define raw packets as the packets exchanged in the network which are not a
part of the active traffic but are used for network management such as for net-
work discovery, multicast listeners discovery, requesting networking parameters
from DHCP servers etc. These packets are necessary for many network protocols
such as MDNS, NDP, MLD, DHCP etc.
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The raw packets are absorbed in the intermediate switches and they are not
meant for hosts. The SDN enabled switches send cumulative statistics of sent
and received packets to the controller that includes raw packets. Therefore for
calculating packet loss accurately, it is necessary to separate data packets from
raw packets.

Using Emulation. We emulate the network with no active traffic between
hosts for some time and the controller polls the switches queries the switches
to accumulate the statistics about the packets exchanged. The network is called
raw network. Later this data is used to calculate packet loss.

Using Mathematical Model. We emulated different network topologies for
accumulating raw packet statistics and noticed a pattern in which packets are
exchanged which was periodic and additive based on the topology of network.

We devised our own algorithm [12] for predicting raw packet flow in any net-
work. The algorithm uses the spanning tree information about network topology
and calculates the number of hosts and switches in the subnetwork for each inter-
face of every switch in the network and based on that count, the raw packets are
estimated.

4.2 Gathering Port and Flow Statistics

Port Statistics. Other implementations propose approaches for per-flow packet
loss only and not for per-port packet loss. Even though OpenTM [4] advocates
polling each path’s switch randomly or in round robin as most efficient, and
OpenNetMon polls each flow-path’s last switch; we poll every switch of the
network for port statistics.

The reasons are manifold. Firstly, collecting flow based statistics becomes
complex and tedious in large networks with multiple flows. Further, non-edge
switches generally have a large number of flows to maintain, making the query
for flow statistics more expensive. When more flows exist, non-edge switches will
be polled more frequently degrading efficiency. For a network with n switches
there can be nC2 flows in the worst case. In contrast, in our approach there
are at most n port statistics requests and size of query response and polling
frequency is independent of number of flows in the network.

Therefore, our approach introduces relatively less additional network load
which affects the network and influences the accuracy of the measurements.

Flow Statistics. For flow based statistics collection, the round robin switch
selection becomes more complex in larger networks with multiple flows. There-
fore, in our implementation we query the switches linearly that does not explode
to nC

2 in the worst case.

4.3 Real Time Estimation

For calculating per port packet loss statistics at a given port, we subtract the RX
packets (packets received on the port) at the destination port of the destination
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switch from TX packets (transmitted out of the port) packets at the source port
of the source switch. Further, from this value we subtract the raw RX packets
at the destination port of the destination switch from raw TX packets at the
source port of the source switch.

packetLoss(perport) = [TXa − RXa] − [Xr − RXr];

where, a: active network, r: raw network.
For calculating per flow statistics, we subtract the packet count at the desti-

nation port of the destination switch from the source port of the source switch

packetLoss(perflow) = Counts − Countd;

here, s: source, d: destination.
The raw packet correction cannot be applied to flows because no flows are

generated in raw network and hence no data is collected.

4.4 Extrapolation within Poll Interval

Once the controller gets data, it uses two methodologies to predict data: extrap-
olation based on rate of packet loss in last k seconds; and extrapolation based
on rate of packet loss and change in rate of packet loss in last k seconds.

5 Experimental Setups

5.1 Experimental Setup 1: Single Flow

For initial comparison purposes with OpenNetMon, a linear network topology
consisting of three connected switches was used, with ends connected with two
host systems (Fig. 2).

Fig. 2. Experimental setup for single flow
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Here, hαeβ denotes port of host and sαeβ denotes port of switch, having
links with bandwidths 10, 1, 2 and 10 mbps respectively. Iperf was used to
send udp/tcp data from h2 to h1 at 5 mbps, this setting was designed so that
approximately 1 mbps loss would occur at link2 and some loss would occur at
link 3 as well. The polling frequency (k) was kept as 5 s.

5.2 Experimental Setup 2: Multiple Flows

(See Fig. 3).

Fig. 3. Experimental setup for multiple flows

A linear network topology consisting of 3 connected switches is used. Switch
s1 is connected to two host systems and one host each is connected at s2 and s3.
Iperf UDP traffic of 6 mbps and 8 mbps is generated for h1–h4 and h2–h3 pair
of hosts respectively.

6 Results

6.1 Comparison of Accuracy for Single Flow

We ran experiments on the aforementioned topology for networks transmitting
TCP and UDP traffic. On the same network we also ran the OpenNetMon mod-
ule to compare the accuracy reported. Since there is only one flow, we assume per
port loss to be equal to per flow loss, hence comparison is possible. We recorded
the actual packet loss data by periodically calling qdisc’s tc tool.
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(a) Cumulative Packet Loss (b) Real time Packet Loss

Fig. 4. UDP traffic

UDP Traffic. UDP traffic of bandwidth 5 mbps is generated using iperf from
host h2 to host h1. As the graph shows, our proposed method closely matches
with the packet loss reported by qdisc, whereas OpenNetMon reports lags behind
as raw packets which are absorbed in the intermediate switches are reported as
lost. We present both real time and cumulative statistics here (Fig. 4).

TCP Traffic. TCP traffic is generated using iperf from host h2 to host h1. As
the graph shows, our proposed method matches with the packet loss reported
by qdisc, whereas OpenNetMon reports lags behind as raw packets which are
absorbed in the intermediate switches are reported as lost. We present both
realtime and cumulative statistics here (Fig. 5).

(a) Cumulative Packet Loss (b) Real time Packet Loss

Fig. 5. TCP traffic

As compared to OpenNetMon, this method increases the accuracy of reported
real-time packet loss (error is reduced to 2–3% from 9–10%) for aforementioned
network.



162 Y. Sinha et al.

6.2 Comparison of Accuracy for Multiple Flows

We present the comparison of total packet loss of two flows from h4 to h1 and
h3 to h2 calculated by OpenNetMon, qdisc and our approach. As explained in
Sect. 4.3, raw packet correction cannot be applied to flows; hence our approach
and OpenNetMon’s approach gives us identical results. We have skipped those
plots.

Since qdisc reports statistics port wise only, for comparison we compare the
total statistics of flow 1 and flow 2 combined. The raw packet correction has
been applied to total packet loss. Clearly, we can see that OpenNetMon fails to
account for the raw packets and thus reports packet loss erroneously (Fig. 6).

(a) Cumulative Packet Loss (b) Real time Packet Loss

Fig. 6. Multiple flows

6.3 Extrapolation Within Poll Interval

(See Fig. 7).

Fig. 7. Packet loss rate based extrapolation
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Extrapolation Based on Rate of Packet Loss. For the poll interval we
extrapolate the packet loss rate observed during the last 5 s i.e., the packet loss
rate is assumed to sustain for the next five seconds. So accuracy largely depends
on how dynamically the network traffic is changing and how frequently the con-
troller is polling the switches for the statistics. For relatively stable network,
extrapolation gives packet loss with good accuracy but if the network changes
drastically within the poll interval, the controller and hence the extrapolation
fails to capture it (Fig. 8).

Fig. 8. Packet loss rate based extrapolation and change in packet loss rate

Packet Loss Rate Based Extrapolation and Change in Packet Loss
Rate. Here, we extrapolate based on the packet loss rate and also the change
in rate of packet loss. The extrapolation is highly sensitive to small changes in
rate of change of packet loss, so this proves that the prediction model is not
dependent on higher derivatives of time.

7 Future Work

As proposed by PayLess [6], we can reduce the network overhead by using an
adaptive scheduling algorithm for polling. For reporting packet loss during the
poll interval, we can use history based prediction. More features based on network
topology can be added.

8 Conclusion

Network Admins and Internet service providers can utilize per port loss in SDN
for identifying clusters in large networks which are congestion vulnerable. By
taking into account the packet loss information the proposed method drastically
increases the preciseness of obtained real-time packet loss statistics. It is also
scalable to large dense networks, as it avoids polling edge switches on per flow
basis.
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