
Estimation of End-to-End Available Bandwidth
and Link Capacity in SDN

Manmeet Singh(B), Nitin Varyani, Jobanpreet Singh, and K. Haribabu

Department of Computer Science and Information Systems, BITS, Pilani,
Pilani Campus, Pilani, India

{f2012763,f2009586,f2012124,khari}@pilani.bits-pilani.ac.in

Abstract. The traditional networks, with the control and data plane
integrated into the same network devices, do not provide a global view
of the network performance like degree of congestion, bandwidth utiliza-
tion, etc. Software defined network (SDN) is an approach towards this
problem which separates the control plane of the switch from its data
plane and provide a centralized control plane so as to get a global view
of the network performance and thus make decisions of how to regu-
late flows. In SDN, network monitoring can be achieved more efficiently
than traditional networks using OpenFlow statistics. SDN controller can
keep track of available bandwidth on each link and thus estimate end-
to-end available bandwidth of a path simply by composing individual
link bandwidths thus avoiding end-to-end probing. We have made two
contributions in this paper: (i) proposed and validated a method to esti-
mate end-to-end available bandwidth on any given path by composing
link-wise available bandwidths (ii) proposed a method to measure link
capacity using OpenFlow protocol. We compared our results to the ones
obtained using the state-of-the-art bandwidth measurement tool, Yaz.

Keywords: Link capacity · End-to-end available bandwidth
SDN controller

1 Introduction

Software Defined Networking (SDN) aims to effectively program the network
with software running on a central controller. Today’s network switches and
routers program their forwarding tables locally, which means that network
devices make their own decisions internally about how to forward traffic. Traffic-
forwarding decisions are informed by distributed control-plane protocols like
spanning-tree, OSPF and BGP. But these traditional networking protocols have
limited flexibility. In order for them to work, all network devices participating in
the forwarding domain have to follow the same rules as defined by the protocol
standard. That leaves little room for creativity or unusual business requirements.

M. Singh and N. Varyani—Both authors contributed equally to this work.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

N. Kumar and A. Thakre (Eds.): UBICNET 2017, LNICST 218, pp. 130–141, 2018.

https://doi.org/10.1007/978-3-319-73423-1_12

Estimation of End-to-End Available Bandwidth and Link Capacity in SDN 131

SDN [1,2] is an emerging networking paradigm that overcomes the limita-
tions of current network infrastructures. In case of traditional networks, we have
both the control plane and the data plane integrated into the same network
devices. SDN comes up with an approach to break this vertical integration by
separating the control logic from the underlying routers and switches. With the
separation of the control and data planes, network switches performs only the
forwarding operations based on control logic which is implemented in a logically
centralized controller (or network operating system), simplifying policy enforce-
ment and network (re)configuration and evolution [3]. A logically centralized
programmatic model does not postulate a physically centralized system [4]. The
need to achieve adequate levels of performance, scalability and reliability would
resist such a solution. Instead, production-level SDN network designs resort to
physically distributed control planes [4,5]. To achieve the separation between
the control plane and the data plane we have a well implemented programming
interface between network devices (like switches and routers) and the SDN con-
troller. The controller maintains the global view of the underlying network and
the applications can obtain the statistics of the network state for improved per-
formance. Also, the SDN controller controls the state of the dataplane elements
with the help of well-defined communication protocol. OpenFlow [1,2] is a proto-
col for communication between the control and the forwarding layers of an SDN
architecture. OpenFlow enabled switches provide important statistics about the
network like port statistics, flow statistics, packets transmitted, packet received
and packet loss.

The statistics obtained using SDN Controller can be used to estimate end
to end available bandwidth. The end-to-end available bandwidth is defined as
the maximum rate that the path can provide to a flow, without reducing the
rate of the traffic in that path. This information can be very useful in congestion
control, streaming applications and network selection. Our paper suggests an
approach to estimate and validate the end-to-end available bandwidth. We have
also proposed a method to estimate the capacity of links using statistics obtained
from SDN Controller. We have validated the end-to-end available bandwidth
values using state-of-the-art tools for bandwidth estimation like Yaz. We have
also analyzed the effect of change in the polling time interval, the time interval
after which SDN controller requests the network statistics, on the estimated
end-to-end available bandwidth.

The reminder of the paper is structured as follows. Section 2 presents a short
background on the related work. In Sect. 3 we present our design approach for
measuring end-to-end available bandwidth in SDN. Sect. 4 describes the exper-
imental setup we used to validate our method and Sect. 5 discusses about the
results of tests. Finally, Sect. 6 ends the paper with concluding remarks.

2 Related Work

There are several end-to-end network performance measurement tools pro-
posed in the literature such as Spruce [1], Pathload [3], IGI/PTR [4], Abing
[5], pathChirp [5], DietTopp [6], Yaz [7], and ASSOLO [5]. These end-to-end

132 M. Singh et al.

measurement tools use packet pair techniques to measure performance metrics
like bandwidth, delay, latency, etc. These techniques need to send packets from
one side in a particular pattern and receive on the other end and analyze the
arrival time etc. These approaches are required to be carried out on end-to-end
basis. These techniques lead to packet duplication if bandwidth values are esti-
mated for multiple end hosts. This will also cause congestion in network. This
may also lead to increase in packets drop rate because of which estimated band-
width values might not be accurate. All these limitations can be easily overcome
by the use of SDN controller which queries network statistics and can estimate
end-to-end available bandwidth for any path without packet duplication. Not
only this, controller can also set high priority to the packets sent for bandwidth
estimation so that these packets are not dropped on the way leading to more
accurate bandwidth values than the existing methods.

OpenNetMon [8] is an existing approach in SDN to monitor per-flow metrics
like throughput, delay and packet loss between source and destination. This
approach measures performance metrics for each flow separately and not for a
given path. Our proposed approach measures available bandwidth link-wise and
composes on-demand to find out end-to-end available bandwidth for a given
path. In [9], the authors measures the end-to-end available bandwidth between
any two end-hosts in the network using SDN statistics but their work assumes
link capacity to be known in advance. Our approach measures the link capacity
of the links dynamically without having to run sender or receiver applications
on end hosts. Additionally, we compare our results with well-known tool for
bandwidth estimation in order to validate our results.

3 Design Approach

Our approach learns the topology using the controller API. Using this topology,
it queries the statistics from the switches in the topology. These statistics are
used to estimate the available bandwidth on each link in the network. Instead
of using static values for the maximum capacity, we are estimating the capacity
dynamically. This is because the links which are visible to the controller are not
often the physical links. They may be aggregated links. The Fig. 1 given below
illustrates our approach. The module “Create Topology” is storing the network
topology fetched from SDN controller and is regularly updated. The module
“Store Port Statistics” stores transmitted bytes for each port in a switch and is
updated more frequently. This module is also storing time elapsed. The module
“Estimate Link Capacity” estimates the link capacity dynamically.

3.1 Learning Topology and Consumed Bandwidth Using Controller

A hashable data structure is used to store the topology and consumed band-
width/data rate in each link. A pair (S,D) is used as a key which is mapped to
the ordered set (P1, P2, TB, T,DR,MB) where S and D are source and destina-
tion mac addresses respectively of two switches connected directly in the network.
Source and destination switches are connected through each other using their

Estimation of End-to-End Available Bandwidth and Link Capacity in SDN 133

Fig. 1. Diagram illustrating our design approach

respective port P1 and P2. DR represents the bandwidth consumed between
source and destination switch, T represents the time elapsed, TB is the bytes
transmitted by the source S to destination D from beginning to time T and MB
is the maximum bandwidth (capacity) of the link connecting the two switches
which is estimated dynamically using the method described in Sect. 3.4. We then
calculate the consumed bandwidth/datarate(DR) in the path from S to D at
time Tnew using the formula

DR = (TBnew − TBold)/(Tnew − Told) (1)

where TBnew denotes the number of bytes transmitted through port P1 since
beginning to time Tnew, TBold is the number of bytes transmitted through port
P1 since beginning to time Told. Using the Open Daylight statistics, an obser-
vation was made that for two switches connected by a link, the received bytes
by one switch was much more that the bytes transmitted by the other switch
at the ports through which they are connected. Such discrepancy is resolved
by replication of packets from one interface of switch to all another interfaces
within the switch when it receives a packet. Thus, to have proper calculation of
bandwidth available in links, we have used transmitted bytes.

Same data structure is used to store the information regarding which switch
is connected to which end host along with the consumed bandwidth in those
links.

3.2 Finding Path Between Source and Destination

For a given flow, we are finding its route on the network set by the controller, and
then calculating its end-to-end available bandwidth. We use the northbound API
provided by the SDN controller for fetching the route of a flow in the network
set by the controller according to the policies.

134 M. Singh et al.

3.3 Estimating Available Bandwidth Between Source and
Destination

For each link, we subtract Data Rate (DR) from Maximum Bandwidth (MB)
to get available bandwidth of the link. The minimum of the available band-
widths of links along a path is the end-to-end available bandwidth of the path.
Our approach estimates end-to-end available bandwidth by composing link-wise
bandwidth which avoids generation of redundant traffic if bandwidth values have
to be estimated for multiple pair of hosts.

3.4 Estimating Link-Capacity Dynamically

We need the value of the maximum available capacity in order to estimate the
available bandwidth. There are many available Opensource tools which can find
the capacity of the path. Pathrate [10] estimates the bottleneck capacity by
sending packet pairs, called probing packets, back-to-back and measuring the
dispersion of the packet pairs. Dispersion varies among different packet pairs and
the packet pair bandwidth distribution is analyzed to relate it with capacity.

But with these tools, we need to have receiver and sender applications run-
ning on the end hosts. In our approach, the controller itself controls the traffic
and uses the port statistics to measure the capacity of a given link. The con-
troller generates UDP packets with a unique destination port number. Since the
network topology does not change so frequently, the measurement of capacity
need not be so frequent, and thus it will not significantly affect the real traffic.
We added flow entries in the ovs-switches to direct the traffic towards the link
for which we need to measure the capacity. Consider two ovs-switches s1 and s2
connected with a link l whose capacity needs to be estimated. We add a flow

Fig. 2. Estimating link capacity of 50 MB link

Estimation of End-to-End Available Bandwidth and Link Capacity in SDN 135

entry in s1 to forward all the packets with the predefined unique UDP destina-
tion port number P to s2. In s2, we add a flow entry to drop the packet with the
unique port number P as these packets are just used for measurement of capac-
ity. We measure the rate at which data is received at s2 using port statistics. As
shown in Fig. 2, the traffic is increased in order to estimate the maximum rate
at which data is received at the receiver end of the link. We stop iterating once
we do not observe any change in the maximum value of received throughput,
which is the final link capacity.

4 Experimental Setup

4.1 Bandwidth Estimation Module

As discussed in previous section, we estimate the available bandwidth between
the source and the destination by composing link-wise bandwidths using statis-
tics obtained from the controller. The bandwidth values will be used by the
validation module to analyze its correctness by comparing it with a well-known
bandwidth measurement tool, Yaz.

4.2 Validation Module

This module takes care of analyzing the difference in the bandwidth values
obtained from our work and other available tools. The first measurement is the
value given by our SDN script for bandwidth measurement. The second measure-
ment is the bandwidth value as given by an open source bandwidth measurement
tool, Yaz. While the Yaz adopts heuristic methods for estimating bandwidth by
considering the delay between packet streams, our method uses port statistics
like transmitted bytes in a given link to estimate the bandwidth.

The basic difference between Yaz and our method is that Yaz uses an exper-
imental approach, sending packet probes and observing delays to measure the
available bandwidth but our approach uses a statistical approach, using the data
of all switches in the path to find out the end-to-end available bandwidth.

4.3 Traffic Generation Module

The tool used for generating regulated traffic is Distributed Internet traffic gen-
erator (D-ITG). D-ITG can be used to generate traffic in a network with control-
lable parameters like packet rate, packet size, etc. DITG can be used to generate
traffic in a particular distribution like normal or Poisson distribution.

4.4 Link Capacity Estimation Module

As discussed in Sect. 3.4, we need to know the capacities of the links in the path.
We estimated the capacity of mininet links for various topologies and the results
are given in Table 1. We have also estimated the capacity of the physical LAN

136 M. Singh et al.

wire used in our setup in Fig. 5. The actual capacity of the LAN wire used is
100 Mbps. The first row in Table 1 corresponds to the physical LAN wire.

The estimated values (in Table 1) are higher than expected values by a small
amount in all the experiments dues to some experimental errors.

Table 1. Expected capacity and estimated capacity

Expected capacity (Mbps) Estimated capacity (Mbps)

100 101.2344456787

50 50.2809047531

20 21.4398119679

10 10.8275808985

5 Results and Discussion

5.1 Results on Mininet Testbed

In our first setup, OpenDaylight was used as a controller and mininet was used
to emulate the topology. A custom topology was created in python for our exper-
imentation (Fig. 3). 10.0.0.11 is the IP address allocated by mininet to the phys-
ical computer in which mininet, opendaylight and library is running and can
be seen in the Fig. 3. Mininet network was connected to the physical computer
using Network Address Translation (–nat).

A cross traffic was generated in the network using iperf tool. At node 10.0.0.4,
a user application is connected to our library and is requesting our library end-
to-end available bandwidth between 10.0.0.4 and 10.0.0.6. As can be observed

Fig. 3. Mininet testbed

Estimation of End-to-End Available Bandwidth and Link Capacity in SDN 137

Fig. 4. Time vs. end-to-end available bandwidth between 10.0.0.4 and 10.0.0.6

from Fig. 4, initially there was no traffic in the network and hence we can observe
the value of 10 Gps bandwidth available between 10.0.0.4 and 10.0.0.6.

We can observe a dip at t = 20 s. This is due to udp traffic of 350 Mbps sent
from 10.0.0.6 to 10.0.0.4. Then a udp traffic of 350 Mbps from node 10.0.0.10 to
node 10.0.0.2 was added to the network at around 60 s. We can observe that the
traffic has become turbulent. Another udp traffic of 350 Mbps from 10.0.0.8 to
10.0.0.5 was added to the network at around 100 s. We can thus observe a dip
in the bandwidth available at 100 s.

5.2 Results on Physical Testbed

We created a second testbed which involved a physical link between the switches
to validate our approach in this scenario also. We have created a testbed which
consists of two OVS switches, each installed on a separate physical machine
(Host-2 and Host-4 in Fig. 5). These two machines, and hence the switches, are
connected by a LAN wire of capacity 100 Mbps. Each physical machine has a
Virtual Machine (VM) acting as a host (Host-1 and Host-3 in Fig. 5). Each of
these VMs are connected to the switches as shown in Fig. 5. Hence we have a
linear topology with two switches and four hosts.

We are using D-ITG for the generation of traffic inside the network. We have
used ryu controller for this testbed.

5.3 Comparing Results with Yaz

Figure 6 shows the end-to-end available bandwidth values obtained from Yaz and
our application plotted against time-stamp. We can observe significant amount
of similarity between Yaz results and our work.

138 M. Singh et al.

Fig. 5. Testbed with physical link and ovs-switches

Fig. 6. Comparing the bottleneck bandwidth of the obtained path measured using Yaz
and our method

During the experiment, the amount of traffic generated through the link was
varied after every few seconds so as to verify that irrespective of varying the
traffic through the link, the values given by our Ryu script and Yaz tool are
comparable.

The accuracy α in this experiment is computed as:

α = 1 − |(Byaz − Bryu)/Byaz| (2)

where Byaz and Bryu is the bandwidth obtained by yaz and ryu respectively.
The graph shows that the bandwidth calculated using our approach is very close

Estimation of End-to-End Available Bandwidth and Link Capacity in SDN 139

to the actual bandwidth available, as calculated by the tool yaz. These two
measurements come from two methods which use an entirely different approach
from each other, and yet give comparable results and thus provides a ground for
the correctness of our approach. The advantage of this statistical method over the
experimental method of Yaz is that in this case we have the available bandwidth
corresponding to each link in the path which gives us the knowledge of which link
in the path has the minimum available bandwidth. Another advantage of this
method is that it saves time by storing link wise bandwidth which can be used
instantaneously to calculate bottleneck bandwidths for multiple paths. Unlike in
heuristic methods for bandwidth estimation, we do not need to do end to end
probing in our approach which takes a minimum of round-trip time.

5.4 Estimating Bandwidth Values with Different Polling Time
Intervals

One of the important parameters in our approach is the time after which port
statistics are requested for every switch from the controller at regular intervals.
It is important to note that in a large network, it will put significant pres-
sure/computing delay on the network if we request stats from the controller
at a high frequency. Therefore it is important that this time gap between two
such requests for statistics is tuned according to the size of the network. We
ran different experiments where we varied the polling time interval. We then
calculated the cumulative of the end-to-end available bandwidth measured by
Yaz and our application across time. In Fig. 7, the absolute of the difference
of the two cumulative values was plotted on the y-axis with the time on the
x-axis. From the figure, we can infer that the difference increases with increase
in polling time. This is because as we increase the polling time, the bandwidth

Fig. 7. Cumulative absolute difference between throughput of Yaz and Ryu

140 M. Singh et al.

estimation period will also be increased and we may not be able to capture the
accurate bandwidth with that time delay. But, with the polling time interval of
500 ms, the difference in cumulative bandwidth values is smaller and more closer
to the cumulative bandwidth value of Yaz. Thus, for our testbed, we found the
polling time of 500 ms to give most accurate measurement of end-to-end available
bandwidth.

6 Conclusion

In this paper we present an approach to measure end-to-end available bandwidth
in Software Defined Networks (SDN). We have also validated our results with a
well known bandwidth estimation tool, Yaz. The bandwidth calculated by our
approach is very close to the actual bandwidth available, as calculated by the
tool Yaz. We have also presented an approach to find the maximum capacity
of the link dynamically rather than taking static values. We also observed the
impact of controller polling time interval on the estimation of bandwidth.

There are few areas which are still undiscovered like impact of our approach
on the network traffic. SDN controller keeps on querying statistics from all the
switches in network after fixed interval which may lead to excessive traffic. We
may improve upon this in our future work by querying only the selected switches
based on some factors like ignoring stable switches in non-turbulent environ-
ment. We may also work on the understanding the scalability of our approach
by considering larger networks. The proposed solution doesnt require any appli-
cation running on end hosts and can be used by various applications to tune the
parameters based on the available bottleneck bandwidth.

References

1. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., Shenker, S., Turner, J.: OpenFlow: enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)

2. ONF: Open networking foundation (2014). https://www.opennetworking.org/
3. Kim, H., Feamster, N.: Improving network management with software defined net-

working. IEEE Commun. Mag. 51(2), 114–119 (2013)
4. Koponen, T., Casado, M., Gude, N., Stribling, J., Poutievski, L., Zhu, M.,

Ramanathan, R., Iwata, Y., Inoue, H., Hama, T., Shenker, S.: Onix: a distributed
control platform for large-scale production networks. In: Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation, ser. OSDI
2010, p. 16. USENIX Association, Berkeley (2010)

5. Navratil, J., Cottrell, R.L.: ABwE: a practical approach to available bandwidth.
In: Proceedings of the 4th International Workshop on Passive and Active Network
Measurement PAM 2003 (2003)

6. Jain, M., Dovrolis, C.: Pathload: a measurement tool for end-to-end available band-
width. In: Proceedings of the 3th International Workshop on Passive and Active
Network Measurement PAM 2002 (2002)

7. Hu, N., Steenkiste, P.: Evaluation and characterization of available bandwidth
probing techniques. IEEE JSAC 21(6), 879–894 (2003)

https://www.opennetworking.org/

Estimation of End-to-End Available Bandwidth and Link Capacity in SDN 141

8. Van Adrichem, N.L.M., Doerr, C., Kuipers, F.A.: OpenNetMon: network monitor-
ing in openflow software-defined networks. In: 2014 IEEE Network Operations and
Management Symposium (NOMS). IEEE (2014)

9. Megyesi, P., et al.: Available bandwidth measurement in software defined networks.
In: Proceedings of the 31st Annual ACM Symposium on Applied Computing. ACM
(2016)

10. Dovrolis, C., Ramanathan, P., Moore, D.: Packet-dispersion techniques and a
capacity-estimation methodology. IEEE/ACM Trans. Netw. 12(6), 963–977 (2004)

11. Rechert, K., McHardy, P., Brown, M.A.: HFSC Scheduling with Linux
12. Strauss, J., Katabi, D., Kaashoek, F.: A measurement study of available band-

width estimation tools. In: Proceedings of the 3rd ACM SIGCOMM Conference
on Internet Measurement IMC 2003 (2003)

13. Ribeiro, V., Riedi, R., Baraniuk, R., Navratil, J., Cottrell, L.: pathChirp: effi-
cient available bandwidth estimation for network paths. In: Proceedings of the 4th
International Workshop on Passive and Active Network Measurement PAM 2003
(2003)

14. Johnsson, A., Melander, B., Bjorkman, M.: DietTopp: a first implementation and
evaluation of a simplified bandwidth measurement method. In: Proceedings of the
2nd Swedish National Computer Networking Workshop (2004)

15. Goldoni, E., Rossi, G., Torelli, A.: Assolo, a new method for available bandwidth
estimation. In: Proceedings of the Fourth International Conference on Internet
Monitoring ICIMP 2009, pp. 130–136, May 2009

16. Luckie, M.J., McGregor, A.J., Braun, H.-W.: Towards Improving Packet Probing
Techniques Science (1989)

17. Pakzad, F., Portmann, M., Hayward, J.: Link capacity estimation in wireless soft-
ware defined networks. In: 2015 International Telecommunication Networks and
Applications Conference (ITNAC). IEEE (2015)

	Estimation of End-to-End Available Bandwidth and Link Capacity in SDN
	1 Introduction
	2 Related Work
	3 Design Approach
	3.1 Learning Topology and Consumed Bandwidth Using Controller
	3.2 Finding Path Between Source and Destination
	3.3 Estimating Available Bandwidth Between Source and Destination
	3.4 Estimating Link-Capacity Dynamically

	4 Experimental Setup
	4.1 Bandwidth Estimation Module
	4.2 Validation Module
	4.3 Traffic Generation Module
	4.4 Link Capacity Estimation Module

	5 Results and Discussion
	5.1 Results on Mininet Testbed
	5.2 Results on Physical Testbed
	5.3 Comparing Results with Yaz
	5.4 Estimating Bandwidth Values with Different Polling Time Intervals

	6 Conclusion
	References

