Spark Memory Management

Wei Zhang(‘g) and Jingmei Li

College of Computer Science and Technology, Harbin Engineering University,
Harbin 150001, China
zhangwei72@hrbeu. edu. cn

Abstract. In order to obtain detailed information about Spark framework and
realize fine grained monitoring of cluster operation information, a performance
analysis system is designed. Therefore, the problems of Sparkl.6 memory
management scheme are researched in depth and improved. The experimental
results show that the original memory management scheme is inconsistent with
the requirements of Spark’s official website. However, the improved memory
management scheme not only meets the requirements of Spark’s official web-
site, but also makes the application run successfully under the condition of small
memory capacity.
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1 Introduction

As a computing engine that excels in memory computing, memory management in
Spark is a very important module [1, 2]. Because of its outstanding memory calcula-
tion, putting the application running data in memory as much as possible, the most of
the errors in running applications are caused by spark memory overflow. Due to its
outstanding memory calculation, the application’s running data is stored in memory as
much as possible, resulting in most of the errors in running applications from the spark
memory overflow.

Through the research on the working mechanism of the distributed platform Spark,
a performance analysis system based on Spark log is designed to realize fine grained
monitoring of the cluster operation information. On the basis of fine grained moni-
toring, the memory management of Spark framework is studied deeply and the existing
problems are optimized.

2 Performance Analysis System Design

In order to determine the memory efficiency of the system, it is necessary to accurately
judge the application details of each stage of execution. So a performance analysis
system is designed.

Large data performance analysis system is divided into three main layers and the
overall framework is shown in Fig. 1. The first layer is Spark source plug in, which can
generate Spark application running log by the tool of the slf4j log and calling
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high-precision timing tools of the operating system, methods of Java, etc. The second
layer is the data collation layer. The running log generated by Spark is a readable
natural language of human oriented. It needs regular expression to extract the data it
needs. The original unstructured data is organized into structured data [3], which is
convenient for reading on the third level. The third layer is data visualization, which
can help users analyze the implementation of the application by drawing the appro-
priate chart with visualization tools.
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Fig. 1. Spark performance analysis system framework

3 Spark Memory Management

The memory management scheme in this article refers to the new memory management
scheme in the Sparkl.6 framework [4-6]. The memory management scheme is
implemented using dynamic pre-emption, which means that Execution can borrow free
Storage memory and vice versa. The borrowed memory is recycled when the amount of
memory increases. In memory management, memory is divided into three separate
blocks as shown in Fig. 2.
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Fig. 2. Unified memory manager in Spark 1.6

By analyzing the memory management scheme, there is a problem that how much
memory Execution can borrow from Storage. Storage Fraction is configured on the
Spark official website to indicate the memory ratio that Storage occupies at least. To
study the Spark memory management scheme, it finds that when storage remaining
memory is larger than the difference between Storage’s memory and the initial allo-
cated memory, and when Execution needs more memory than it can borrow, then the
final borrow memory is equal to Storage of the remaining memory. To update Storage
and Execution memory, the now available memory of Storage is equal to the difference
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between previously owned memory and Storage’s remaining memory. Depending on
the condition, the now available memory of Storage is smaller than the initial con-
figuration memory, which is inconsistent with the configuration described on the Spark
official website. This problem leads to the static configuration algorithm degenerate
into an approximate first come first service algorithm. The improved approach is to set
the borrowing memory size to the difference between the now available memory of
Storage and the initial configuration memory.

4 Experimental Verification

4.1 Memory Management Deficiencies and Improvements

In order to find problems of Spark memory management, it needs to obtain Execution
and Storage memory change information. Therefore, the associated log information is
added in the Spark framework and memory change information is recorded in the log
file. This experiment uses Sparkl.6 memory management scheme. The configuration
parameters of Spark Memory Fraction and Spark Memory Storage Fraction are 0.75
and 0.5 respectively. Based on the configuration parameters and the 8G size of the
committed memory, the Storage memory is calculated to be no less than 2887.5 M.

The Storage Memory change information is obtained by submitting the same
PageRank application in the memory management scheme before and after the
improvement, as shown in Fig. 3. From the diagram, the memory of the before
improved memory management scheme varies with time and the minimum of Storage
memory is only 0.297044 M, which obviously does not meet its minimum requirement
of 2887.5 M. So there are problems about Execution and Storage memory borrowing
from each other. However, memory of the improved memory management program
changes in the range of 500 M at different times and memory size is more than
2887.5 M, in line with requirements.
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Fig. 3. Memory data changes
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To verify the performance of the memory management scheme, the same appli-
cation is presented and the change is only the size of the executor memory. The running
time of PageRank applications before and after the improvement of the Spark memory
management scheme is shown in Fig. 4. The performance of the before improved
memory management scheme is basically the same as the improved when the memory
is relatively large. However, the application in the before improved memory man-
agement scheme cannot run properly when the memory size is 7G and 6G, while the
improved memory management solution application can still run successfully. There-
fore, the overall performance of the improved memory management scheme is superior
to that of the before improved memory management scheme.
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Fig. 4. Application run time

5 Conclusions

The source code and implementation principle of Spark framework are analyzed in this
paper. The insufficiency of memory management scheme is proved through experi-
ments and the shortcomings of memory management are improved. The improved
memory management scheme not only meets the requirements of Spark’s official
website for Storage memory configuration, but also has a better performance than the
before improved memory management scheme.
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