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Abstract. In this paper, the blind source separation (BSS) problem
in the multi-carrier efficient communication system is considered, and a
novel joint approximative diagonalization of eigenmatrix (JADE)-based
multiple-input and multiple output (MIMO) model is proposed to sep-
arate the mixed signal that the antennas received. Then, the special
impacting filter (SIF)-based demodulation method is adopted to demod-
ulate the separated signals. Additionally, different from the tradition-
ally efficient demodulation method, the proposed method can achieve
higher communication capacity and spectrum utilization by combining
the MIMO technology and JADE-based separation algorithm. Simula-
tion results show that the JADE-based MIMO efficient communication
system can separate the mixed signals efficiently, reduce the symbol inter-
ference and significantly improved the system performance by using the
multiple antennas.
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1 Introduction

The efficient modulation, which has good flexibility, univerality and anti-jamming
characteristics, was first proposed by Wu [1,2]. Unlike the ultra wide band com-
munication, the efficient modulated signal is sine-like, the symbol “0” is mod-
ulated by N sine carrier cycles and the non-zeros has phase change during the
K (K � N) carrier cycles in the N carrier cycles, the waveform of the modu-
lated signal is shown in Fig. 1. As the sine has a impulse sharp in the frequency
domain, the sine-like efficient modulated signal has the similar characteristics,
which can achieve high band efficiency and high-speed data transmission within
quite narrow bandwidth [3,4]. Up until now, various efficient modulation methods
have been proposed, such as the variable phase shifting keying (VPSK), enhanced
VPSK, very minimum shifting keying (VMSK), pulse position phase reversal
keying (3PRK), missing cycle modulation (MCM), suppressed cycle modulation
(SCM), and minimum sideband modulation (MSB), etc. [5–9]. The above modu-
lations have a same characteristic, that is “asymmetric”.
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The demodulation of the efficient signal is based on the special digital impact-
ing filter (SIF) [10–13]. The SIF is a kind of digital IIR filter that has one pair
of zeros and multiple pair of poles, the frequency response of the SIF was shown
in Fig. 2. When the SIF works on the proper frequency, it can convert the phase
change to amplitude impacting and remove the most noises at the same time. As
the output signal reveal obvious amplitude different, we can use simple threshold
detection method to demodulate the signals in the intermediate frequency, which
can avoid down-conversion to baseband to demodulate the signals. However, the
SIF can not demodulate the non-orthogonal multi-carrier signals. [14] proposed
a blind source separation method to separate the mixed signals, which can assis-
tant the demodulation and achieve significant effect. Since the multiple-input
and multiple-output (MIMO) can provied more spatial diversity, combine the
MIMO and the BSS algorithm to separate the mixed carriers may be an feasible
solution [15–18]. As the multi-carrier efficient system is non-orthogonal, we can
use the SIMO scheme to decrease the symbol interference. In this paper, we first
give the system model of the SIMO multi-carrier system. Then, we propose two
BSS algorithms, one is based on the Kalman filtering (KF), the other one is the
joint approximative diagonalization of eigenmatrix (JADE) algorithm. Finally,
we give the simulation results and conclude the paper.
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Fig. 1. Waveform of the efficient modulation signal

The organization of this manuscript is as follows. In Sect. 2, the system model
of the MIMO efficient communication with interference is described. Next, in
Sect. 3, the blind source separation algorithm and Kalman filtering method is
proposed to demodulate the mixed signals. Section 4 gives the simulation results.
Finally, Sect. 5 concludes the paper.

The notations used in this work are defined as follows. Symbols for vectors
(lower case) and matrices (upper case) are in bold face. IN , N (

0, σ2
nI

)
, (·)T ,

(·)H , diag {·}, ∗ and �·� denote the N ×N identity matrices, the Gaussian distri-
bution with zero mean and covariance being σ2

nI, the transpose, the conjugate
transpose (Hermitian), the diagonal matrix, the convolution and the floor func-
tion, respectively.
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Fig. 2. Frequency response of the special impacting filter

2 System Model of the SIMO Communication with
Interference

The SIMO communication system considered in this section is shown in Fig. 3,
where the communication system has one transmit antenna and multi receive
antennas, and the receive signal is interfered with the independent signal. The
number of the receive antennas is Q. The transmitted signal can be expressed as

s = s1 + s2 + . . . + sP , (1)

where sp ∈ R
L×1 denotes the efficient signal with the carrier frequency being fp,

and L denotes the length of the sampling signal. The receive signal yq ∈ R
L×1

at the qth antenna is
yq = aqs + bqsI + nq, (2)

where ap denotes the channel attenuation between the transmitter and the qth
receive antenna, bp denotes the channel attenuation between the interference and
the qth receive antenna, sI denotes the interference signal and nq denotes the
additive white Gaussian noise (AWGN). Then we can obtain the matrix of the
receive signal

Y = asT + bsTI + N, (3)

where
Y �

(
y1,y2, . . . ,yQ

)T
. (4)

3 Demodulation of the Efficient Modulation Signals

In this work, we propose two approaches to demodulate the multi-carrier signal
with the interference, one is based on the Kalman filtering (KF) [19], the other
one is based on the joint approximative diagonalization of eigenmatrix (JADE)
algorithm, and each approach has two steps:
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Fig. 3. The system model of the SIMO communication with interference

1. Separate the multi-carrier signal from the interfered receive signal based on
the blind source separation (BSS);

2. The demodulation of the multi-carrier signal by the SIF.

The lth column of the receive signal Y denotes as yl ∈ R
Q×1, and

yl = Axl + nl, (5)

where A �
(
a,b

)
, xl �

(
sl
sI,l

)
, nl denotes the noise, sl and sI,l respectively

denote the lth entry of the transmit signal s and interference signal. During the
process of the BSS, the separating matrix Bl ∈ R

2×Q is adopted to separate the
mixture signal yl, and we can obtain the separated signal zl ∈ R

2×1

zl = Blyl. (6)

In the theory of the BSS, the separating matrix Bl includes two parts, i.e.,
the prewhitening matrix Ul ∈ R

2×Q and the weight matrix Wl ∈ R
2×2, and

Bl = WT
l Ul. (7)

3.1 The Separation of the Multi-carrier Signal Based on the BSS
via the KF Algorithm

We first attain vl � Ulyl by the prewhitening matrix Ul, where v is the nor-
malized white vector with the zero mean and unity covariance E {

vlvT
l

}
= I.

The LMS-type prewhitening matrix is adopted

Ul = Ul−1 + λl

[
I − (

Ul−1yl
) (

Ul−1yl
)T ]

Ul−1, (8)

where λl is a leaning rate.
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During the process of obtaining the weight matrix Wl, the KF method is
adopted [20]

dl = g(WT
l−1vl) (9)

hl = Kl,l−1dl (10)

ml = hl/
(
dT
l hl + Ql

)
(11)

Kl+1,l = Kl,l−1 − mlhT
l (12)

WT
l = WT

l−1 + ml

(
vT
l − dT

l WT
l−1

)
, (13)

where Kl,l−1 = E
{(

WT
l − ŴT

l

) (
WT

l − ŴT
l

)T
}

, Ql = ‖vl − Wl−1dl‖22 and

g (t) = t − tanh (t).

3.2 The Separation of the Efficient Signal from the Interfered
Receive Signal Based on the BSS via the JADE Algorithm

The separation of the multi-carrier signal from the interfered receive signal based
on the BSS via the JADE algorithm is described in Algorithm1. Statistical
performance is achieved by involving all the cumulants of order 2 and 4 while a
fast optimization is obtained by the device of joint diagonalization [21,22].

4 Simulation Results

First, we evaluate the proposed methods of the multi-carrier efficient signal
demodulation, and the simulation parameters are given in Table 1. To show
the simulation results more clearly, we set 4 sub-carrier and use the M-ary effi-
cient signal as the sources. Additionally, these parameters are the same for the
simulations in the following contents, if there is no additional statement.

Table 1. Simulation parameters

Parameter Value

The M-ary efficient signal M = 2

Carrier frequencies 10e610.005e610.002e610.001e6

Sample frequency 10 × 10e6

Symbol length N N = 100

Phase change length K K = 2

Transmit antennas 1

Received antennas 4

In the proposed methods of the signal demodulation, two steps are included,
where at the first step the mixed signal is separated and at the second step a
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Algorithm 1. The BSS based on the JADE
1: Calculate the prewhitening matrix U from the covariance matrix Ry of the receive

signal, and the prewhitening matrix should satisfy the follow condition

UA = V, (14)

where V is an unitary matrix. Then we can obtain the prewhitening matrix U
from the subspace decomposition of Ry

U =

[(
λ1 − σ2

n

)− 1
2 g1,

(
λ2 − σ2

n

)− 1
2 g2

]H

, (15)

where λ1, λ2 are the two maximal eigenvalues of Ry, g1 and g2 are the corre-
sponding eigenvector. σ2

n is the variance of noise, which is the mean value of the
left eigenvalues.

2: Obtain the whiten signal vl

vl = Uyl = U (Axl + nl) (16)

= Vxl + Unl.

3: The matrix of the fourth-order cumulant of the whiten signal is defined as

{Q (P)}ij =

2∑
k,r=1

cum
{

vi, v
H
j , vk, vH

r

}
Prk, (17)

where Prk denotes the rth and kth column of an arbitrary non-zeros matrix P ∈
R

2×2, and {Q (P)}ij denotes the ith and jth column of the fourth-order cumulant
Q (P). The fourth-order cumulant can be expressed as

cum
{

vi, v
H
j , vk, vH

r

}
= μ4

{
vi, v

H
j , vk, vH

r

}

− μ2

{
vi, v

H
j

}
μ2

{
vk, vH

r

}
− μ2 {vi, vk} μ2

{
vH
j , vH

r

}

− μ2

{
vi, v

H
r

}
μ2

{
vH
j , vk

}
, (18)

where μ4

{
vi, v

H
j , vk, vH

r

}
= 1

L

∑L
l=1 vl,iv

H
l,jv

H
l,kvl,r, μ2

{
vi, v

H
j

}
= 1

L

∑L
l=1 vl,ivl,j ,

μ2

{
vk, vH

r

}
= 1

L

∑L
l=1 vl,kvl,r, μ2 {vi, vk} = 1

L

∑L
l=1 vl,iv

H
l,k, μ2

{
vH
j , vH

r

}
=

1
L

∑L
l=1 vl,jvl,r, μ2

{
vi, v

H
r

}
= 1

L

∑L
l=1 vl,ivl,r, μ2

{
vH
j , vk

}
= 1

L

∑L
l=1 vH

l,jv
H
l,k.

4: From the eigen decomposition of Q (P), we can attain the approximation of V

Q (P) = V̂ΣV̂H . (19)

5: The separated signal is
zl = V̂HUyl. (20)
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SIF is adopt to filtering the signals. At the first step, the BSS for 4 carriers
with interference in the SIMO scenario is shown in Fig. 4, in order to show the
separation more clearly, Fig. 4 only give 2 sub-carrier’s results, and we can see
that the mixed signals with interference can be separated successfully.
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Fig. 4. The BSS separation process of the mixed signals

Additionally, the demodulation processes with the SIF are also shown in
Fig. 5. As the demodulation results are sensitive with the first step, in the prac-
tical communication system, the number of the sub-carriers is constraint. For
example, 4 signals are used in our simulation, and 20 signals are used in prac-
tice. Then, use the threshold determination to obtain the demodulator results.
As shown in Fig. 5, we can see the final output signals can achieve better per-
formance at the whole duration. Figure 6 shows the BER performance of the
proposed system, from Fig. 6, we can see that the BER performance of each
sub-carrier is affected by the carrier interval. Since we use one sample frequecy
and the SIF must work in proper range, the performances of each sub-carrier
is different, the best is the sub-carrier 1 and others decent orderatly. However,
even the subcarrier 4, can still obtain satisfactory performance.
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5 Conclusions

In this work, the demodulation for multi-carrier signals has been considered.
The system model has been established for the multi-carrier MIMO efficient
system. Kalman filtering and JADE algorithms have been adopted to separate
the mixed carriers and the inerferences. Moreover, a novel two-step method has
been proposed to demodulate the subcarriers and to improve the demodulation
performance. The simulation results show that the demodulation performance
can be significantly improved by adopting the BSS and MIMO. Future work will
concentrate on the waveform optimization for multiple transmit antennas in the
multi-carrier efficient system.
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