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Abstract. A computationally efficient two-dimensional (2D) direction
of arrival (DOA) estimation method based on cylindrical conformal
antenna array is investigated in this paper. By dividing the entire array
into several sub-arrays and transforming every sub-array to virtual uni-
form rectangular array (URA) via interpolation technique, the gen-
eralization propagator method (GPM) without eigen-decomposition is
employed to estimate the noise subspace accurately and quickly. Further-
more, in order to lower the computational complexity of the 2D spectral
peak searching, a rank reduction (RARE) method based on URA is uti-
lized to solve the 2D DOAs by successive 1D spectrum functions. At
last, some numerical simulations verified the superiority of the proposed
method.
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1 Introduction

The conformal array is usually referred to an array amounted with sensors on the
curvature surface [1]. The conformal array has many advantages that contains
reduction of aerodynamic drag, wide-angle coverage, space saving, reduction of
radar cross-section and so on [2]. Due to this flexibility, conformal array has
many promising applications in a variety of fields such as radar, sonar, airborne,
ship-borne and wireless communication [3].

Among various of techniques for conformal array, the direction of arrival
(DOA) estimation has attracted a lot of interests. However, in contrast to the
ordinary array, the distinct electromagnetic characteristics of conformal array
leads to an tough problem of DOA estimation owing to the curvature of the
carrier surface. As a result, the DOA algorithm such as multiple signal classifica-
tion (MUSIC) [4] and estimation of signal parameters via rotational invariance
techniques (ESPRIT) [5] and other conventional methods are not suitable for
conformal array directly. Besides, because of the “shadow effect” of the metallic
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cylinder, not all of the sensors can receive the signal and which will degrade
the detection performance dramatically. In view of these problems, many DOA
algorithms have been investigated recently. [6] proposed a higher accuracy DOA
estimation via parallel factor analysis (PARAFAC). A general transformation
procedure based on geometric algebra is proposed in [7] and the author esti-
mated the parameters by ESPRIT too. [8] introduced a new perspective to
shadowing effect and utilized rank reduction (RARE) method to obtain bet-
ter estimation performance. In order to detect more signals than sensors, [9]
firstly utilized the array extension character of the nested array to improve the
degree of freedom (DOF) of the array. However, the references mentioned above
need eigen-decomposition or 2D spectral peak searching, which will bring much
computational complexity to the actual system.

The contribution of this paper is developing a fast DOA estimation method
based on cylindrical conformal array. By dividing the whole array into sub-
arrays, the interpolation technique is exploited to map each sub-array to an
uniform rectangular array (URA). Then, the DOAs are estimated based on the
efficient Generalization propagator method (GPM) [10] algorithm without any
eigen-decompositon. Besides, the proposed method only requires several 1-D
spectrum peaking searchings to estimate the 2D DOAs. Moreover, the estimated
parameters are automatically paired together without extra operation.

2 The Signal Model of the Conformal Array

Consider D narrowband far-field signal sources that impinge on an arbitrary
3D conformal array of M directional sensors. Assume k0 = 2π/λ and λ is the
wavelength of the signal source, the snapshot data model is established in [11],
and the corresponding array steering vector is given by

a(θ, φ) = [r1e
−jk0p1·u, r2e

−jk0p2·u, ..., rMe−jk0pM ·u]T (1)

ri = (g2iθ + g2iφ)1/2(k2
iθ + k2

iφ)1/2cos(θigk) = |gi||pl|cos(θigk)

= gi · ql = giθkθ + giφkφ (2)

where θ and φ are the elevation and azimuth angles, respectively. pi =
[xi, yi, zi], i=1,2,...M denotes the position vector of the ith sensor, u =
[sinθcosφ, sinθsinφ, cosφ]T denotes the propagation vector. ri is the response
of unit signal by the ith element in the global coordinate system. As shown in
Fig. 1(b), uθ and uφ are unit vectors, kθ and kφ are the polarisation parameters
of signal, gi is the pattern of the ith element, qi is the direction of the electric
field, θigk denotes the angle between vector gi and vector qi. The critical step is
the transform from global coordinate to local coordinate and More details can
be found in [11]. Thus, the snapshot data model of conformal array antenna can
be expressed as

X(n) = G · AS(n) + N(n) = (Gθ · AθKθ + Gφ · AφKφ)S(n) + N(n)
= BS(n) + N(n) (3)
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where B = G · A, G is the antenna response matrix, A is the M × D full-
rank steering matrix, S(n) denotes the D × 1 source waveforms and N(n) is the
M × 1 additive noise which is spatially white and statistically independent from
the signal source.

3 The Proposed Method

3.1 Cylinder Conformal Array Structure and the 2D Array
Interpolation Technique

The configure of the cylindrical conformal antenna array is given in Fig. 1(a),
where the sensors are uniformly distributed over the surface of the cylinder. Due
to the “shadow effect”, which could degrade the DOA estimation performance
dramatically because of the incomplete steering vector, the sub-array divided
technique is utilized in this paper. Firstly, we divide the whole array into 6
sub-arrays, and each sub-array covers a sector of π/3. Thus, we could always
find a sub-array and all the sensors of this sub-array can receive the signal
from any direction. Then, the combination of all sub-arrays will cover all the
possible impinging signals. Because the array structure and the DOA estimation
process are the same for each sub-array, only one sub-array shown in Fig. 1(a)
is considered throughout this paper.

Fig. 1. (a) Cylindrical conformal array. (b) Interpolated array.

The 2D interpolation technique is used here to mitigate the effects of imper-
fect conformal array response, such as the diversity of the sensor’s response,
mutual coupling effect and so on. The principle of interpolated array is to trans-
form the true conformal array response B to the desired virtual array respoone
Ã by define an interpolation matrix T within the field of view [12], as shown in
Fig. 1(b). This process can be expressed as

TH(G · A) = Ã. (4)

Obviously, we cannot calculate a pert T because the solution of (4) is not
close-form. Thus, The equation of τ =

∥
∥
∥Ã − TH(G · A)

∥
∥
∥ / ‖G · A‖ is used to
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evaluate the interpolation accuracy. When τ is small enough, for example, 0.01,
then T can be accepted. A stable and accurate method to solve the T is proposed
in [13]. It is observed that it will cost much time in calculating the interpolation
matrix T if the size of the sector [Θ,Φ] and number of interpolation are very
large. However, we only need to calculate the matrix T once and it also can be
done off-line and stored in the system so that it won’t increase the computation
burden when estimating the DOA parameters.

3.2 DOA Estimation Method Based on GPM and RARE

In the last section, we transform the conformal array to a virtual URA firstly,
as shown in Fig. 1(b). The URA has M = My × Mz sensors, and the sensor’s
space along y axis and z axis are dy and dz, respectively. For simplicity, we define
dy = dz = λ/2. Then, the steering vector of the URA Ã is given by

Ã(u, v) = [ã(u1, v1), ã(u2, v2), ..., ã(uD, vD)] (5)

where ã(u, v) = ãy(u) ⊗ ãz(v), ãy(u) = [1, e−j(2π/λ)dyu, ..., e−j(2π/λ)dy(My−1)u]T ,
ãz(v) = [1, e−j(2π/λ)dzv, ..., e−j(2π/λ)dz(Mz−1)v]T . And u = sinθsinφ and v =
cosθ are the direction variables relative to the y-axis and z-axis, respectively.
Then, according to (3), the original conformal array manifold B(u, v) can be
rewritten as

B(u, v) = G · A = FÃ(u, v) (6)

where F = (TH)−1. Denote B(u, v) as B which is decomposed as

B = [B1B0B2]T (7)

where B1 ∈ C
L×D, B0 ∈ C

D×D, B2 ∈ C
(M−L−D)×D, L = 0, ...,M −D−1. Note

that B0 is a nonsingular matrix, so two propagator matrices exist and satisfy
B1 = PH

1LB0,B2 = PH
2LB0. Define a block matrix CH

L ∈ C
(M−D)×M), which is

given by

CH
L =

[−IL PH
1L 0

0 PH
2L −IM−L−D

]

(8)

It is easy to know that CH
L B = 0. Then, divide the array output matrix

X(t) as

X(t) = [X1X0X2]T . (9)

Assume the noise is zero in (3), we can get X1 = PH
1LX0, X2 = PH

2LX0.
Then, the covariance matrix of X(t) can be expressed as

R = E(XXH) = E(X[XH
1 XH

0 XH
2 ]) = [D E F] (10)
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where D ∈ C
M×L, E ∈ C

M×D, F ∈ C
M×(M−L−D). And we have

D = E(XXH
1 ) = E(XXH

0 )P1L = EP1L (11)

F = E(XXH
2 ) = E(XXH

0 )P2L = EP2L (12)

where E = E(XXH
0 ). However, when considering the noise, the propagator

matrix can be estimated by the following minimization problem

J1 = min ‖D − EP1L‖2F , J2 = min ‖F − EP2L‖2F . (13)

The optimal solution of J1 and J2 are given by

P1L = (EHE)−1EHD,P2L = (EHE)−1EHF. (14)

The DOAs can be obtained by solving the following spectrum function,

f(u, v) = (B(u, v)HCLCH
L B(u, v)) = 0 (15)

In order to utilize the full information contained in the received data, recon-
struct C = [C0, ...,Ci−1,CM−D−i+1, ...,CM−D], where 1 ≤ i ≤ ⌊

M−D+1
2

⌋

[10].
Therefore, (15) can be rewritten as

f(u, v) = (B(u, v)HCCHB(u, v)) = 0 (16)

In fact, the larger the i, the DOA estimation performance will be better,
but it will consume much time too. As a result, we prefer to choose the value
according practical need. However, it can be seen from (16) that the function
requires to perform an exhaustive 2D spectrum speak searching of both u and
v, which leads to very high computational complexity. Hence, in order to reduce
computation burden, the spectral RARE technique is employed here. It follows
from (6) that we can easily get

B(u, v) = F[ãy(u) ⊗ ãz(v)] = F[Iy ⊗ ãz(v)]ãy(u). (17)

The Eq. (16) can be rewritten as

f(u, v) = ãH
y (u)Z(v)ãy = 0 (18)

where

Z(v) = [Iy ⊗ ãz(v)]HFHCCHF[Iy ⊗ ãz(v)]. (19)

Since ãy(u) �= 0, (18) holds true only if Z(v) reduces rank. Generally speak-
ing, Z(v) is a full-rank matrix, but the Z(v) will reduce rank when v is the true
DOA. As a result, Z(v) will reach a minimum value when v coincides with the
true DOA vi. Therefore, we could have

f(v) = 1/min(Z(v)). (20)
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Utilizing the {v̂i}D
i=1 estimated by (20), the corresponding angles {ûi}D

i=1 can
be estimated by searching the highest peaks of the following function

f(u) =
1

‖[F(ãy(u) ⊗ âz(vi))]HC‖2 , i = 1, 2, ...,D. (21)

At last, the elevation and azimuth angles (θi, φi)D
i=1 can be obtained by

θi = cos−1(vi), φi = sin−1(
ui

sin(θi)
). (22)

Remark : Compared with the traditional 2D spectral spectrum algorithm based
on subspace decomposition, the method proposed in this paper avoids eigen-
decomposition that reduces much computational burden. Besides, we replace the
exhaustive 2D spectrum peak searching with successive 1D searchings, which fur-
ther reduces the calculation cost significantly. In addition, the estimated azimuth
and elevation can be paired automatically.

4 Simulations and Results

In order to illustrate the performance of the proposed method, some simulations
are taken out in comparison with the traditional MUSIC algorithm and GPM.
Because of the symmetry of the array, only one sub-array of the conformal array
is utilized in the following simulations. As is shown in Fig. 1(a), the sub-array
consists of 30 elements located uniformly and covers a sector of π/3. Therefore
the angle between each two adjacent sensors is π/6, the height of the cylinder
array H = 5λ/2 and the radius r = 2λ. As shown in Fig. 1(b), the corresponding
interpolated array is composed of 6 rows and 5 columns with dx = dy = λ/2 and
the interpolation error τ = 0.18. We take 100 numbers of Monte Carlo trials in
the following figures.

As shown in Fig. 2, the root-mean-square-error (RMSE) varying with the
SNR and the snapshots are investigated. Assume there are two incident sources,
and the DOAs (θ, φ) are (52◦,−8◦) and (68◦, 8◦), respectively. Assume the snap-
shots are 500, the RMSE curve versus SNR is plotted in Fig. 2(a) of three meth-
ods. Then, let SNR is 10 dB, the RMSE versus snapshots is given in Fig. 2(b).
The RMSE values are obtained by running 100 Monte Carlo simulations. It can
be seen from the Fig. 2, the performance of the three methods are improved
with increased SNR and snapshots. But the estimation accuracy of the proposed
method is not as good as MUSIC and PM with low SNR and small snapshots.
However, when the SNR is greater than 5 dB and the snapshots is larger than
70, the performance of the proposed algorithm outperforms MUSIC and PM.
That’s because we adopt the interpolation technique that transforms the origi-
nal conformal array to a more clear planar array only if the interpolation error
τ is small enough.

Assume the DOAs are given by (60◦, 0◦) and (65◦, 0◦), the resolution per-
formance is examined by the probability of successful detection in Fig. 3. Let
the snapshots are 500, the resolution performance varying with SNR is given in
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Fig. 3(a), and the resolution performance varying with snapshots when SNR is
10 dB is given in Fig. 3(b). From the Fig. 3, we can see that the proposed method
is better than GPM but worse than MUSIC algorithm with low SNR and small
snapshots. However, with the SNR and snapshots is larger, the resolution per-
formance of the MUSIC and proposed algorithm are contiguous.
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Fig. 2. (a) The RMSE versus SNR. (b) The RMSE versus snapshots.
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Fig. 3. (a) The successful probability versus snapshots. (b) The successful probability
versus SNR.

5 Conclusion

In this paper, we have demonstrated an efficient 2D DOA algorithm for cylin-
drical conformal array. In this method, in order to avoid “shadow effect” of
the metallic cylinder, the array is divided into several sub-arrays. Then, the
interpolation technique is applied to transform the curved arrays to URA with
omni-directional elements. Next, by combining the GPM and RARE method
together, the signal’s DOAs could be solved accurately and quickly. Rather than
estimate the DOAs by the 2D spectrum peak searching, the proposed algorithm
can obtain the 2D DOAs by several 1D peak searching, which reduce the compu-
tational complexity greatly. Moreover, the azimuth and elevation can be paired
automatically.
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