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Abstract. Least mean squares (LMS) algorithm was considered as one of the
effective methods in adaptive system identifications. Different from many
unknown systems, LMS algorithm cannot exploit any structure characteristics.
In case of sparse channels, sparse LMS algorithms are proposed to exploit
channel sparsity and thus these methods can achieve better estimation perfor-
mance than standard one, under the assumption of Gaussian noise environment.
Specifically, several sparse constraint functions, ¢1-norm, reweighted ¢;-norm
and ¢p-norm, are developed to take advantage of channel sparsity. By using
different sparse functions, these proposed methods are termed as zero-attracting
LMS (ZA-LMS), reweighted ZA-LMS (RZA-LMS), reweighted ¢,-norm LMS
(RL1-LMS) and /,-norm LMS (LP-LMS). Our simulation results confirm the
priority of the new algorithm and show that the proposed sparse algorithms are
superior to the standard LMS in number scenarios.
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1 Introduction

Second-order statistical errors square based on the least mean square (LMS) algorithm
has been considered one of the effective adaptive filtering methods in many applica-
tions such as channel estimation and system identification [1, 2], which is a kind of
stochastic gradient algorithm. Superior to some other parameter estimation methods,
e.g., recursive least squares (RLS) [3] algorithm, the LMS algorithm has the advantage
that mass stochastic knowledge of the channel and the input data sequence are not
required. Due to its simplicity and easy implementations, the LMS algorithm has been
widely applied in signal processing and communications including system detection [4]
and channel estimation [5] and so on, without considering any information about the
special characteristics of the channel being estimated itself. However, due to the
potential sparsity in channels [6—-10], some great efforts have been made to develop
such LMS algorithms that can employ the potential sparsity and achieve better
parameter estimation. The method based on the idea is to add a penalty term to the cost
function to perform sparse solution [11, 12]. In a typical fading communication system,
the selection of the channel estimation algorithms involves the statistical information
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with respect to channels, the expected performance of the used algorithm and its
convergence speed.

This paper is organized as follows. First we introduce the communication system
model and corresponding linear adaptive algorithms. According to the given model, a
standard LMS algorithm and the modifications of the LMS algorithm are provided.
Particularly, the sparse channel estimation problem is considered and the sparse CIR is
estimated. At last, we confirmed the effectiveness of our study.

2 System Model and Algorithms

Figure 1 shows the system model of a typical communication system in this paper.
Assume that the channel vector b = [hy, hy, . . ., hN]T where N is the length of the CIR
and ()T denotes the transposition. hy = [hl,k, hog, ... hN,k]T denotes the estimate of

the vector h at the time step K. xp = [, X1, - - - Xe—n + I]T is the input data vector of
the system, n; is the additive noise at the receiver end, d; is the actual response,
e, =di — h,{xk is the error signal, y; is the system output and y; denotes its estimate.
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Fig. 1. Block diagram of the communication system.
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2.1 Standard LMS Algorithm

Let Ly = (1/2)e} denotes the cost function of the standard LMS algorithm. By min-
imizing the cost function using the gradient descent method, the parameters of the
unknown system can be identified iteratively. Therefore, the iterative equation can be
given as

OLy

hi i th—ﬂa—hk

= hy + pepxy (1)

Here, p is the step size which is among O and k;;x, where Apax i the maximum

eigenvalue of the covariance matrix of x; (i.e., R = E[xkx,f]), which ensures that the
standard LMS algorithm converges to the optimum point.

2.2  ZA-LMS Algorithm

If most of the coefficients in the vector k are zeros or insignificant values, then the CIR
is called sparse channel. In this case, the /;-norm of A; can be used to penalize the
non-sparse solutions. Add it to the standard LMS cost function and then we can get the
new cost function L = (1/2)ef +yzllhll;, . where |.[|, denotes the /;-norm of a
vector and ), is a corresponding weight for the penalty term. It’s remarkable that the
new cost function is convex, so that the gradient descent method can be guaranteed to
be convergent under some conditions. The corresponding algorithm is called the zero
attracting LMS (ZA-LMS) and its iterative formula is

his 1 = hy + perxy — pyusgn(hy) (2)

where pz, = 1y, and signum function sgn(-) is denoted as O for x = 0, 1 for x > 0,
and —1 for x < 0 and sgn(h;) is the sparse penalty strength of the ZA-LMS.

2.3 RZA-LMS Algorithm

To take more advantage of the sparsity of the channel, we can use the /y-norm to
penalize the non-sparse solutions. However, since lp-norm penalty has very high
computation complexity, a approximate penalty is introduced. And then the cost
function becomes

= (5) 4 ) toel1-+ 2 3)
' Crza

where hy; is the i-th entry of the channel weights Ay. ygz4 and €, are some positive
numbers. Since the logarithmic constraint in (3) that resembles the /p-norm penalty can
describe the sparse channel more accurate, it is expected that the corresponding
algorithm which is defined as the reweighted ZA-LMS (RZA-LMS) will gain a more
accurate estimation than the ZA-LMS. The iterative formula of the corresponding
algorithm is



410 J. Yang et al.

sgn(hy)
hyi1 = hy + perxy — —_— 4
k+1 kT HerXk pRZA1+€RZA|hk| (4)
where ppsy = UVrza €RzAs ERza= 1/ €z, absolute value ||, and % is the
sparse penalty strength of the RZA-LMS.

2.4 LP- LMS Algorithm

In order to further obtain sparse information, p-norm (where p is among O and 1) spare
function is adopted in LMS-type channel estimation. We called it as for LP-LMS
algorithm. The new function is more close to the /p-norm and as the value of p becomes
smaller, it resembles the /p-norm more. Thus, the cost function of LP-LMS algorithm is
given as

Il 1
£t = (5)et il s)

where ||.||, denotes the /,-norm of the vector and y, denotes the corresponding weight
I P »

term. It is notice that the cost function (5) is nonconvex and the analysis of the global
convergence and consistency of the corresponding algorithm is problematic. However,
as it will be seen in the next section, the method based on (5) shows better performance
than the RZA-LMS which faces the same problems. Using gradient descent, the update
equation based on (5) can be derived as

1-p
(Imall,) " sgntie)
€ + '

(6)

hi1 = hi+ pexy — p,,

(Iimell,)" " sn(iy)

— 111 1
where p, = py,, €, is some number near to zero and T

is the sparse

penalty strength of the /,-norm penalized LMS.

2.5 RLI1-LMS Algorithm

One of alternative way to exploit channel sparsity by using RL1 penalty in accordance
with mean square error term. This method considers a penalty term proportional to the
reweighted /;-norm of the coefficient vector. Compared to the standard /;-norm min-
imization, this method can get better channel estimation performance. The mentioned
cost function above can be written as

~—

a1
g = (3)et+ vl g

where 7, is a tradeoff parameter and RL1 row vector s; are given as
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1

[sk]i: e + |[hk—l]i| , 1

—1,...,N (8)

with small positive parameter €,. Hence, the RL1-LMS algorithm is derived as

sgn(hy) 9)

h =hy+ pexy — p,—————
k+1 kT HerXg p€r+\hk71|

sgn(hy)
€+ i1

where p, = uy, and
penalized LMS.

is the sparse penalty strength of the reweighted /;-norm

3 Simulation Results

Compared with the standard LMS algorithm, other modified LMS algorithms take the
sparsity of the CIR into account. Figure 2(a) is a sparse vector (the number of non-zero
values is much smaller than the total length of the vector) diagram. Figure 2(b) shows
the sparse penalty strengths for the algorithms tested versus the coefficient component
of the estimate hy of the vector h at the time step k where the CIR is assumed to
hi = [—1:0.001 : 1] for all algorithms and p is set to 0.5 in the £,-norm penalized
method. For the ZA-LMS, the sparse penalty strength is zero at the position of zero and
is the value of 1 at the non-zero position. Therefore, when the sparse channel vector is
disturbed by noise, the value of the sparse position may fluctuate near the value of 0
and the ZA-LMS algorithm can result in obvious errors. However, for the RZA-LMS,
the £,-norm penalized LMS and reweighted ¢;-norm penalized LMS, the closer to the
value of zero the value of the sparse channel vector coefficient is, the greater the sparse
penalty strength is and the higher the probability of taking zero is; the farther away
from the value of zero the value of the sparse channel vector coefficient is, the smaller
the sparse penalty strength is and the lower the probability of taking zero is. Overall,
the sparse penalty strength of the /,-norm penalized LMS is greater than that of the
reweighted ¢;-norm penalized LMS and the sparse penalty strength of the reweighted
£;-norm penalized LMS is greater than that of the RZA-LMS.

As is shown in Fig. 3, ZA-LMS, RZA-LMS, the /,-norm penalized LMS and the
reweighted ¢;-norm penalized LMS take different regularization parameters to obtain
simulation results of MSEs in contrast to the number of iterations respectively in the
other same conditions. The step size is set to = 0.05 and the signal-to-noise ratio
(SNR) is set to 10 dB, which implies that the MSEs are averaged at 2000 simulations.
The length of the CIR is 16 and the sparsity level is set to 1, which means that there is
only one nonzero tap in the CIR, but the nonzero position is allocated randomly. The
other parameters are set to €gza= 10, €= €= 0.05, p = 0.5. Figure 3 shows the
convergence speed and the steady state MSE is related to p and p is larger, the con-
vergence speed is faster but the MSE is also larger at steady state. With p decreasing, the
MSE of the steady state decreases first, then increases. The minimum steady state MSEs
of ZA-LMS, RZA-LMS, the ¢,-norm penalized LMS and the reweighted ¢;-norm

penalized LMS appear in p = 1073, p = 1072, p = 107!, p = 10°, respectively.



412 J. Yang et al.

(@

0.6 T T T c- T T T T T

0.2f T

_(ID
[o)]
T
J

Lp(e, =0.05)

— R7A
—— R 1

e |

Strength of sparse penalty

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Value of coefficient

Fig. 2. Strengths of sparse penalty of different estimation algorithms vs number of iterations.
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Fig. 3. MSE comparisons with respect to iterations in SNR = 10 dB.
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Fig. 4. MSE comparisons with respect to iterations in SNR = 20 dB.

Figure 4 indicates the MSEs of different estimation algorithms with respect to
iterations in SNR = 10 dB. The performance of the improved sparse LMS algorithms
is compared to that of the standard LMS. The step size is set to p = 0.05, the
signal-to-noise ratio (SNR) is set to 20 dB, the channel length of the CIR is 16, the
sparsity level is set to 1 and number of iterations is 2000 times for all LMS algorithms.
The other parameters are set to €rza= 10, €= €= 0.05,p = 0.5. This can be
observed by observing Fig. 4. It is worth noting that both ZA-LMS and RZA-LMS
algorithms demonstrate very close performance, while they are much better than LMS.
In case of the MSE curves shown in the Fig. 4, it can also be concluded that the
reweighted ¢;-norm penalized LMS has better performance than the ¢,-norm penalized
LMS. By examining Fig. 4, it can also be seen that both the reweighted 11-norm and
the /,-norm penalized LMS algorithms have better performance than ZA-LMS and
RZA-LMS algorithms.

4 Conclusions

This paper considers the sparsity of the communication system and applies the sparisty
to channel estimation with LMS algorithms. Quantitative simulations and analysis
indicates that the improved LMS algorithms outperform the standard LMS algorithm
with regard to sparse CIR. In addition, for the RZA-LMS, the £,-norm penalized LMS
and reweighted /;-norm penalized LMS, the closer to the value of zero the value of the
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sparse channel vector coefficient is, the greater the sparse penalty strength is and the
higher the probability of taking zero is and vice versa, which can refrain from the
sparse channel vector disturbed by noise that can make the value of the sparse position
fluctuate near the value of zero and cause great errors. Compared to the ZA-LMS and
RZA-LMS, the ¢,-norm penalized LMS and reweighted ¢;-norm penalized LMS have
better performance in simulation results.
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