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Abstract. K-means is a very common clustering algorithm, whose per-
formance depends largely on the initially selected cluster center. The
K-means algorithm proposed by this paper uses a new strategy to select
the initial cluster center. It works by calculating the minimum and max-
imum distances from data to the origin, dividing this range into several
equal ranges, and then adjusting every range according to the data distri-
bution to equate the number of data contained in the ranges as much as
possible, and finally calculating the average of data in every range and
taking it as initial cluster center. The theoretical analysis shows that
despite linear time complexity of initialization process, this algorithm
has the features of an superlinear initialization method. The application
of this algorithm to the analysis of GPS data when vehicle is moving
shows that it can effectively increase the clustering speed and finally
achieve better vehicle steering identification.
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An intuitional objective function of clustering algorithms in common use is the
Sum of Squares for Error (SSE), which is provided below:

K
SSE="Y" |x;—cill3 (1)

i=1 x;€P,;

where: K is the number of clusters, x; is the jth datum of this data set, P; is the
ith cluster, c; is the center of the ith cluster (¢; = 1/|P;] ijePi x;, where | P;| is
the number of data in the ith cluster), ||.||2 is Euclidean distance. A clustering
algorithm is aimed to find the minimum SSE. But because this non-convex opti-
mization is NP-hard [1,2], its approximate solution in polynomial time can only
be found at present. K-means algorithm is just such a clustering algorithm. It has
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been widely used, as its concept is simple and easy to implement. For instance,
K-means algorithm is used in [3] to cluster the GPS data during vehicle driving
for identifying whether the vehicle is making a turn or not, and finally to build
a learning system of vehicle steering identification based on the architecture of
dynamic onboard navigation system. This system sends the GPS data collected
by client (onboard terminal) to the server, which, in turn, automatically calcu-
lates the steering identification model applicable to the vehicle and returns the
model parameters to the client. As the server needs to create a model for many
clients, the modeling speed has become an issue of great concern during the
server programming, which would influence the server’s quality and capability.
This paper optimizes the first step of modeling, namely K-means clustering, in
order to increase the rate of convergence.

The rest of this paper is organized as follows. Section 1 gives a brief intro-
duction to the research of the initialization of K-means clustering algorithm.
Section 2 presents the improved initialization method and the performance it
achieves. In Sect. 3 three initialization methods are compared using the field test
data and the test results are analyzed. Section 4 concludes this paper.

1 Related Work

K-means clustering algorithm is implemented through two steps: initialization
and subsequent iterations. Initialization is to select the initial cluster center,
namely c; of the first iteration, while subsequent iterations are to continuously
change the cluster center until it won’t change any more or the number of itera-
tions reaches its maximum. As pointed out by [4], K-means clustering algorithm
is so sensitive to the cluster center selected during initialization that the selec-
tion of a different initial cluster center will influence the algorithm performance.
Whats more, improper initialization may result in empty clustering, slower con-
vergence and a higher risk of being caught in the locally optimal solution [5].
Therefore, improving the initialization process has become an important means
of K-means performance improvement. In the [4], various initialization methods
are analyzed and divided into two categories: linear time complexity and ultra-
linear time complexity. The linear method is often non-deterministic or sensitive
to sequence [6], while the superlinear method is usually deterministic. In other
words, by clustering the same data set repeatedly with the K-means algorithm
based on linear initialization, different clustering results will be obtained; by
clustering the same data set with the K-means algorithm based on superlinear
initialization, only one clustering result will be obtained, no matter how many
times the data set is clustered. Therefore, with the superlinear method, only
one clustering, rather than repeated clustering to select the optimal clustering
result, is needed. Besides, the superlinear method often enables fast convergence
of k-means algorithm and applies to the clustering of a large data set. It is just
these advantages that attract extensive attention to the superlinear method. For
example, in the [7], a variance-based method is proposed to sequence all the data
according to the attribute with the maximum variance, then to divide the sorted
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data into K groups, and finally to choose the middle datum in every group as
initial cluster center. In the [8], the kd-tree of data points is built for density
estimation, and then the modified maximin method is used to select K clus-
ter centers from the densely generated leaves. In the [9], a robust initialization
method is proposed to use a local outlier factor that can prevent an abnormal
datum from being taken as cluster center. In the [10], an initialization method
with k iterations is proposed to at first establish k sets and then during the ith
(1 < < k) iteration, to channel the nearest data pairs from the data sets into
the ith set continuously until the number of data in the set exceeds a certain
threshold, suggesting the end of the ith iteration and the start of the (i+1)th
iteration. In the [11], a method based on attribute transformation is proposed
to at first change the negative attribute of all the data into positive, then to
sequence all the changed data according to their distances to the origin and
divide the sorted data into K groups, and finally to choose the middle datum in
every group as initial cluster center. The idea of [12] is similar to that of [11],
with the exception of using the averages to choose the cluster center. The time
complexity of all the above superlinear methods is O(nlogn), except for that in
the [10], where the time complexity is O(n?).

2 Improved Initialization Method

This paper proposes an improved initialization method that uses the ideas of
[11,12] for reference and needs to change the negative attribute of all the data
in a way shown in [11,12].

After changing the attribute, the calculation of the distances from data to
the origin is also needed. But next, unlike the methods in [11,12], the proposed
method no longer needs to sequence all the data according to their distances to
the origin, but to choose the minimum (d,;,) and maximum (d;,q;) distances.
The time complexity of this step is O(n).

Next, divide the range [dyin, dmaz] into K subranges evenly, each with the
following interval:
dmaz - dm,in

K
The range of the ith subrange (1 <4 < K) is [d; min, di,maz), Where:

interval =

di,min = dmzn + (Z - 1) x interval

dimaz = Amin + 1 X interval

Then group all the data by subrange in the following way. Suppose d; is the
distance from the datum x; to the origin, then xj is in the range i if d; pin <
d; < d;,mas- During the data grouping, the total of data c; in every subrange is
also counted. The time complexity of this step is O(n).

Next, adjust the range of every subrange. The reason for implementing this
step is that the data may be distributed among various subranges so unevenly
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and differently that the ranges will be empty or composed of abnormal data to
finally affect the clustering performance. The method of subrange adjustment is
as follows:

Step 1: Define the variables i and p;, and initialize i as 1 and p; as 0.

Step 2: If i=K, end the subrange adjustment; otherwise, go to the step 3.

Step 3: Suppose p; = p; +¢i, p = pi + Ciy1, p1 = pi/p, P2 = Cip1/p, 1 = i/(i+1)
and lo = 1/(i + 1). To better describe the process of subrange adjustment,
the range i and the pre-i ranges may be called by a joint name “pre-i ranges”.
Then p; is the total of data in the pre-i ranges, and p is the total of data in
the pre-i+ 1 ranges (or the total of current data). p; and py are the ratios
between data totals: p; is the ratio of the data total of pre-i ranges to current
data total, and ps is the ratio of the data total in the range i+ 1 to current
data total. By the same token, l; and [y are the ratios between range lengths:
l1 is the ratio of the total length of pre-i ranges to that of current ranges, and
l5 is the ratio of the length of range i+ 1 to that of current ranges.

Step 4: If p; > l1, it means the data density in the pre-i ranges is bigger than
that in the range i+ 1 so that the pre-i ranges need to be scaled down by
dl = ((p1 — l1)/p1) x I1; otherwise, the data density in the pre-i ranges is
smaller than that in the range i+ 1 so that the pre-i ranges need to be scaled
up by dl = ((pl —11)/p2) x 12/I1.

Step 5: Calculate dj maz = djmaz — dj,maz X dl for every pre-i range, where there
is1<j<i

Step 6: Suppose i=1i+ 1. Then go to the step 2.

The time complexity of subrange adjustment is O(K?).

Regroup the data by using new subranges, and calculate the average of every
group of data, which is just the initial cluster center. The time complexity of
this step is O(n).

Here the proposed initialization method comes to an end. Next is the sub-
sequent iterations of K-means algorithm. The total time complexity of this ini-
tialization is O(3n + K?), which is actually linear O(n), as K is a constant and
K < n. But the method proposed by this paper features superlinear initializa-
tion rather than linear initialization. In other words, this method is deterministic,
because no matter how many times the method is executed, the ranges for the
same data set remain unchanged, so does the final clustering result.

The core of the proposed initialization method is subrange adjustment, whose
aim is to enable uniform distribution of data in every subrange. This method
applies to continuously distributed data, such as the data in [3], as the GPS
direction during driving often changes continuously.

The algorithm in this paper, the algorithms in [11,12], and the K-means
algorithm based on random initialization are used to cluster one data set in [3]
respectively. Suppose m =4 and K =4. The learning curve shown in Fig. 1, where
the vertical axis is SSE value, can be obtained. In the Fig. 1, “range” is the algo-
rithm in this paper, “median” is the algorithm in [11], “mean” is the algorithm
in [12], and “random” is the algorithm based on random initialization. It can
be obviously seen from the figure that, the algorithm in this paper converges
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Fig. 1. Learning curves of four K-means clustering algorithms

fastest. In fact, it is iterated for 13 times, the algorithms in [11,12] for 24 times
respectively, and the algorithm based on random initialization for 26 times. In
addition, the final SSE is 4822.19 in the proposed algorithm and 4884.18 in the
other three algorithms respectively.

3 Analysis of Experimental Results

The proposed algorithm can apply to the learning system of vehicle steering
identification designed in [3] in order to speed up the identification modeling.
To verify the actual application effect of the algorithm, this section introduces it
into the learning system designed in [3] and through an experiment, evaluates the
performance of the finally generated identification model as well as the execution
speed of the algorithm.

The experiment uses the data in [3] for testing. The data are contained in
two data sets, each sampled at a frequency of 1Hz. The sampling mileage of
data set 1 is 18.23 km, covering 2960 GPS points; whereas the sampling mileage
of data set 2 is 11.58 km, covering 2370 GPS points.

The comparison objects in the experiment include the algorithm in this
paper, the algorithms in [11,12], and the K-means algorithm based on ran-
dom initialization. The comparison indicators include F; and the number of
subsequent iterations of K-means algorithm, with the former reflecting the per-
formance of identification model and the latter indirectly showing the speed of
K-means clustering (i.e. the execution speed of the algorithm).

By testing the data set 1 with the four algorithms respectively, the results in
Tables1 and 2 can be obtained. It is observed from Table 1 that, the proposed
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Table 1. Fy values obtained from testing the data set 1 with the four algorithms

m | K| Random | Algorithm | Algorithm | Our The best
in [11] in [12] algorithm

3 14 10.86792 | 0.86792 0.86792 0.87711 Our algorithm

3 |5 0.78226 |0.78226 0.78226 0.87097 Our algorithm

4 14 10.89164 |0.92141 0.92141 0.93175 Our algorithm

4 |5 10.94461 |0.89710 0.89710 0.94461 Our algorithm

5 14 10.93421 |0.93421 0.93421 0.80000 Other algorithms
5 |5 0.93421 | 0.95484 0.95484 0.93421 Other algorithms
6 4 |0.80000 | 0.80000 0.80000 0.76316 Other algorithms
6 |5 0.95971 |0.95971 0.95971 0.82988 Other algorithms

Table 2. Number of subsequent iterations when clustering the data set 1 with the four
algorithms

m | K |Random | Algorithm | Algorithm | Our algorithm | The best
in [11] in [12]

3 14 |26 28 27 18 Our algorithm
315 |42 41 41 12 Our algorithm
4 14 126 24 24 13 Our algorithm
415 36 40 39 12 Our algorithm
5 14|19 21 20 6 Our algorithm
515 (39 40 39 6 Our algorithm
6 |4 |23 27 26 5 Our algorithm
6 5|27 29 28 12 Our algorithm

algorithm performs best in 4 of all the 8 models. The average F; of the 4 models
is 0.90611, 0.02706 higher than the algorithm in the second place; while the
average F; of the other 4 models is 0.83181, 0.08038 lower than the algorithm in
the first place. Besides, when m =4 or m =5, the F; values of optimal models are
all greater than 0.9 and average 0.93941. It can be seen from the Table 2 that,
the proposed algorithm is executed much faster and all the models are executed
fastest, with 18.9 (or 64.3%) iterations fewer than the algorithm in the second
place on average.

By testing the data set 2 with the four algorithms respectively, the results in
Tables 3 and 4 can be obtained. It is observed from Table 3 that, the proposed
algorithm performs best in 5 of all the 8 models. The average F; of the 5 models
is 0.93818, 0.07999 higher than the algorithm in the second place; while the
average F; of the other 3 models is 0.93351, 0.01947 lower than the algorithm in
the first place. Besides, when m =4 or m =5, the F; values of optimal models are
all greater than 0.9 and average 0.95117. It can be seen from the Table4 that,
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Table 3. Fy values obtained from testing the data set 2 with the four algorithms

m | K|Random | Algorithm | Algorithm in [12] | Our algorithm | The best
in [11]

3 |4 10.84685 | 0.84685 0.84685 0.90716 Our algorithm

3 |5 0.79832 0.79832 0.79832 0.90765 Our algorithm

4 14 10.93617 | 0.93617 0.93617 0.93293 Other algorithms
4 |5 10.85787 | 0.85787 0.85787 0.94260 Our algorithm

5 14 10.96689 0.96689 0.96689 0.93426 Other algorithms
5 |5 10.94631 |0.94631 0.94631 0.95973 Our algorithm

6 |4 10.92913 | 0.95588 0.95588 0.93333 Other algorithms
6 |5 ]0.97358 | 0.97358 0.97358 0.97378 Our algorithm

Table 4. Number of subsequent iterations when clustering the data set 2 with the four
algorithms

m | K | Random | Algorithm | Algorithm | Our algorithm | The best
in [11] in [12]

314 |40 40 40 8 Our algorithm
315 |28 39 39 6 Our algorithm
4 14119 28 27 5 Our algorithm
4 15|26 38 38 11 Our algorithm
5 |4 |15 19 19 12 Our algorithm
5 15 |16 18 28 10 Our algorithm
6 |4 |26 18 18 5 Our algorithm
6 |5 |19 23 23 14 Our algorithm

the proposed algorithm is executed much faster and all the models are executed
fastest, with 16.5 (or 62.8%) iterations fewer than the algorithm in the second
place on average.

It is observed from the above two groups of test results that, the algorithm
proposed by this paper performs best in 9 of all the 16 models. The average F}
of the 9 models is 0.92393, 0.0418 higher than the algorithm in the second place;
while the average F} of the other 7 models is 0.87540, 0.05428 lower than the
algorithm in the first place. For the m value commonly used in practical applica-
tion (m =4 or m =5), the average F} of its optimal models is 0.94529. Moreover,
the subsequent iterations of K-means clustering based on the proposed algo-
rithm are significantly reduced, with 16.3 (or 62.7%) iterations fewer than the
algorithm in the second place on average. It is thus clear that, the identification
model built upon the clustering algorithm proposed by this paper performs basi-
cally as well as the other 3 algorithms, while the common identification models
using this algorithm perform slightly better but much faster.
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4 Conclusion

This paper improves the initialization process of K-means clustering algorithm
to effectively reduce subsequent iterations without compromising the clustering
performance, which makes it suitable for large-scale data clustering [13,14]. The
application of this algorithm to the learning system of vehicle steering identifi-
cation can speed up the modeling of steering identification and guarantee the
performance of identification model. The core concept of this algorithm is to
calculate the value range of a data set in a certain aspect and then to reason-
ably group the data in this range in order to choose the initial cluster center.
This paper uses the distances from data to the origin as the criterion of data
division, which, in practical use, may be one dimension of those data as well.
The selection of this criterion depends mainly on data distribution - an area to
be explored more deeply.
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