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Abstract. A novel spatial spectrum estimation method for two-dimensional
wideband signals by sparse reconstruction in continuous domain is addressed in
this paper. First, Discrete Fourier Transform (DFT) is employed for the data.
Then the convex and corresponding dual problems of the data with most power
are founded and solved. After that the sparse support sets are decided by
semidefinite program and extracting roots. Finally, both of the direction of
arrival (DOA) and the primary signals are determined. The proposed idea averts
the off-grid effect based on grid partition, and some theoretical results are
included to explain the effectiveness of the method.
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1 Introduction

Spatial spectrum estimation through sparse reconstruction is a new kind of direction of
arrival (DOA) method arisen in the past few decades [1–5]. Malioutov [6] transformed
the DOA estimation into sparse recovery under redundant dictionary, optimized the
solution by second-order cone programming. Tang [7] proposed a beam forming
method based on sparse characteristic, then reconstruct the signals with orthogonal
matching pursuit, but some false peaks exist when there are too many signals. Yin [8]
presented the concept of space compression sampling matrix, the signals are sampled,
and they are compressed at the same time, then calculated the initial signals and DOA
through solving some optimization problems. Basis pursuit [9] and Matching pursuit
[10] are both based on L1 penalty term. The former has a higher precision, but the
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computation is complex; the latter is the opposite. In 2013, Carlin [11] employed
Bayesian learning for signal recovery, provided a new scheme according to the spatial
of solution and timing structure.

Conventional sparse reconstruction technique has lowered the requirement of signal
to noise ratio (SNR) and sampling number, but generally speaking, the actual DOAs
are not at the grid point. Therefore, Candes and Fernandez [12, 13] studied the
super-resolution from samples at the low end of the spectrum, as he reconstructed
sources in continuous domain, which had improved the estimation precision to a great
extent, but they did not studied how to estimate spatial spectrum for wideband signals
according to the theory.

This paper presents a new spatial spectrum estimation algorithm, first, the sources
are partitioned into some subbands, then the convex and corresponding dual problems
of the data with most power are founded and solved. After that the sparse support sets
are decided by semidefinite program and extracting roots. Finally, both of the direction
of arrival (DOA) and the primary signals are determined. The proposed algorithm
averts the error created by sparse reconstruction based on grid partition, and it has a
preferable performance under the circumstance of low SNR and small samples.

2 Array Signal Model

As is shown in Fig. 1, assume that there is an arbitrary array with N sensors in X–Y
plane, the origin O is defined as the reference, and the coordinate of these sensors are
ðxn; ynÞðn ¼ 1; 2; � � � ;NÞ. Suppose that there are K far-field wideband sources
impinging on these sensors, DOAs are ð/k; hkÞðk ¼ 1; 2; � � � ;KÞ, here /k and hk are the
azimuth and elevation respectively, so output of the array is

yðtÞ ¼ y1ðtÞ; � � � ; yNðtÞ½ �T¼
XK
k¼1

skðt � s1kÞ; � � � ;
XK
k¼1

skðt � sNkÞ
" #T

þ b1ðtÞ; � � � ; bNðtÞ½ �T ð1Þ

where ynðtÞ ðn ¼ 1; 2; � � � ;NÞ is the output of the nth sensor, c is the speed of the
source, b1ðtÞ; � � � ; bNðtÞ½ � is the additive Gaussian white noise vector, bnðtÞ is the
corresponding noise of the nth sensor.

SignalZ

YO

Sensor n
X

Fig. 1. Array signal model
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The frequency band is partitioned into G parts, perform discrete Fourier transform
(DFT) on yðtÞ, we have:

YðfgÞ ¼ AðfgÞSðfgÞ þ BðfgÞ g ¼ 1; 2; � � � ;G ð2Þ

Here, AðfgÞ is the array manifold of fg

AðfgÞ ¼ ½aðfg;/1; h1Þ; � � � ; aðfg;/k; hkÞ; � � � ; aðfg;/K ; hKÞ�

¼

e�j2pfgs11 � � � e�j2pfgs1k � � � e�j2pfgs1K

..

. ..
. ..

.

e�j2pfgsn1 � � � e�j2pfgsnk � � � e�j2pfgsnK

..

. ..
. ..

.

e�j2pfgsN1 � � � e�j2pfgsNk � � � e�j2pfgsNK

2
666664

3
777775

ð3Þ

where aðfg;/k; hkÞ is the steering vector of the source from ð/k; hkÞðk ¼ 1; 2; � � � ;KÞ at
fg, assume that f0 is the frequency with the most power and SðfgÞ is formed by some
spikes [13], then we let

ukðf0Þ ¼
f0
c
1� cos/k cos hk þ sin/k cos hkð Þ½ � ð4Þ

so the sparse source Sðf0Þ can be written

Sðf0Þ ¼

S1ðf0Þ
..
.

Skðf0Þ
..
.

SKðf0Þ

2
6666664

3
7777775
¼

t1ðf0Þdu1ðf0Þ
..
.

tkðf0Þdukðf0Þ
..
.

tKðf0ÞduK ðf0Þ

2
6666664

3
7777775

ð5Þ

where dukðf0Þ is the dirac measure at ukðf0Þ, let fu1ðf0Þ; � � � ;uKðf0Þg be the support set
of Sðf0Þ, here ukðf0Þ contains DOA of the kth source, tkðf0Þ is its amplitude.

3 Estimation Theory

Assume that the output Yðf0Þ is infinite, given a measure SðuÞ, the corresponding
Fourier coefficients is

qðn; f0Þ ¼
XK
k¼1

exp �j2pnukðf0Þð Þ tkðf0Þ; n ¼ 1; 2; � � � ;N ð6Þ

then we have
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Qðf0Þ ¼ Fðf0ÞSðf0Þ ð7Þ

where

Qðf0Þ ¼ qð1; f0Þ; qð2; f0Þ; � � � ; qðN; f0Þ½ �T ð8Þ

and

Fðf0Þ ¼
exp �j2pu1ðf0Þð Þ � � � exp �j2puKðf0Þð Þ

exp �j2p� 2u1ðf0Þð Þ � � � exp �j2p� 2uKðf0Þð Þ
..
. . .

. ..
.

exp �j2pNu1ðf0Þð Þ � � � exp �j2pNuKðf0Þð Þ

2
6664

3
7775 ð9Þ

We need to solve the following problem so as to recover the original wideband
sources

min
Sðf0Þ

Sðf0Þk kTV; s:t: Qðf0Þ ¼ Fðf0ÞSðf0Þ ð10Þ

where Sðf0Þk kTV¼
PK
k¼1

Skðf0Þ ¼
PK
k¼1

tkðf0Þ; thus we can reconstruct the source Sðf0Þ if

the interval between uaðf0Þ and ubðf0Þ is larger than 2=f0 for 1� a; b�N; a 6¼ b;
k ¼ 1; � � � ;K [12].

Assume that sampling number at each frequency is Z, Eq. (2) is changed as

�Yðf0Þ ¼ Aðf0Þ�Sðf0Þ þ �Bðf0Þ ð11Þ

that is

�Yðf0Þ ¼ Yðf0; 1Þ; � � � ;Yðf0; zÞ; � � � ;Yðf0; ZÞ½ � ð12Þ

Yðf0; zÞ is the zth snapshots of f0, �Sðf0Þ and �Bðf0Þ are respectively the source and
noise matrix. It can be deduced from (11)

�Yðf0Þ � �Bðf0Þ ¼ Aðf0Þ�Sðf0Þ ¼ Aðf0ÞSðf0Þ þ Dðf0Þ ð13Þ

Obviously, Dðf0Þ is the corresponding perturbation, it reflects the error between
infinite and finite received data. Combining (13), we can deduce the Fourier coefficients
of finite samples
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qðn; f0Þ

¼ exp �j2pn
f0
c

� �
�Ynðf0Þ � �Bnðf0Þð Þ

¼ exp �j2pn
f0
c

� � XK
k¼1

ej2pn
f0
c cos/k cos hk þ sin/k cos hkð Þtkðf0ÞþDðn; f0Þ

 !

¼
XK
k¼1

e�j2pn
f0
c 1� cos/k cos hk þ sin/k cos hkð Þð Þtkðf0Þþ exp �j2pn

f0
c

� �
Dðn; f0Þ

¼
XK
k¼1

exp �j2pnukðf0Þð Þ tkðf0Þþxðn; f0Þ

ð14Þ

where xðn; f0Þ ¼ exp �j2pn f0
c

� �
Dðn; f0Þ; so (14) can be modified as

Qðf0Þ ¼ Fðf0ÞSðf0Þþxðf0Þ ð15Þ

here xðf0Þ ¼ xð1; f0Þ; � � � ;xðN; f0Þ½ �T: Similarly, we can also solve the following
problem so as to recover the original sources

min
Sðf0Þ

Sðf0Þk kTV s:t: Qðf0Þ � Fðf0ÞSðf0Þk k2 � 1ðf0Þj j ð16Þ

The question (16) is a multiple convex problem and difficult to be disposed, so we
need to simplify it by corresponding dual problem [12]

max
Uðf0Þ;U

Re½Q�ðf0ÞUðf0Þ� � 1ðf0Þ Uðf0Þk k2
� �

s:t:

U Uðf0Þ
U�ðf0Þ 1

� �
�; 0 F�ðf0ÞUðf0Þk kL1 � 1

ð17Þ

here
PN�b

a¼1
Za;aþ b ¼ 1; b ¼ 0

0; b ¼ 1; 2; � � � ;N � 1

�
; U 2 CN�N is a Hermitian matrix, and

Uðf0Þ is the corresponding Lagrangian multiplier for Qðf0Þ ¼ Fðf0ÞSðf0Þþxðf0Þ, we
can obtain the parameter according to the semidefinite program [14], which can be
solved by the tool in [15].

The following lemma [13] can be used for describing the relation of (16) and (17)

F̂�Û
	 


ðf0Þ ¼ sign Ŝðf0Þ
�� ��

TV

	 

ð18Þ

where Ŝðf0Þ
�� ��

TV 6¼ 0, F̂ðf0Þ, Ûðf0Þ and Ŝðf0Þ are respectively the estimated vector of
Fðf0Þ, Uðf0Þ and Sðf0Þ.
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As Ŝðf0Þ
�� ��

TV 6¼ 0, we can solve absolute value of (18)

F̂�ðf0ÞÛðf0Þ
�� �� ¼ 1 ð19Þ

thus, the DOAs of the sources can be acquired by combining (4) and (9), then the
sources will also be reconstructed by (5). The proposed sparse reconstruction method is
implemented in continuous domain, so it can be abbreviated to SCD method.

4 Simulations

Next, several simulations is shown, the center frequency of the sources is 3 GHz, the
sensors are places at (0, 0), (−0.15, 0.17), (−0.051, 0.079), (−0.18, 0.063), (−0.068,
−0.041), (0.059, 0.21), (0.07, 0.31), (0.041, −0.039), unit is meter. Two-sided corre-
lation transformation (TCT) [16], conventional sparse methods in discrete domain
(SDD) [9] and SCD are compared for the simulations, 1ðf0Þ in SCD is taken as 2.
The DOA grids of SDD and searching step size of TCT are both taken as 0:2	.

4.1 Normalization Spectrum

Assume that four far-field wideband sources impinge on the array with same power
from ð20:5	; 80:5	Þ; ð30:5	; 70:5	Þ; ð40:5	; 60:5	Þ,ð50:5	; 50:5	Þ, SNR is 3 dB, sam-
pling number at every frequency is 60, the width of the band is 20% of the center
frequency, normalization spectrums of the three methods are given in Figs. 2, 3 and 4.

4.2 Estimation Error

Figure 5 has shown the estimation error versus SNR when sampling times of each
frequency is 60, 400 Monte-Carlo simulations have run for each SNR, as is shown in
Fig. 5, the estimation error of SCD is lower than the other two methods.
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Fig. 2. Normalization spectrum of TCT
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Fig. 3. Normalization spectrum of SDD
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Fig. 4. Normalization spectrum of SCD method
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Fig. 5. Estimation error versus SNR
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Figure 6 has shown the estimation error versus sampling times of each frequency
when SNR is 2 dB, as is shown in Fig. 6, we can estimate the DOAs more accurately
than TCT and SDD.

5 Conclusion

This paper presents a new kind of spatial spectrum estimation for wideband sources by
sparse reconstruction in continuous domain, the sources are partitioned into some
subbands, then the convex and corresponding dual problems of the data with most
power are founded and solved. The sparse support sets are decided by semidefinite
program and extracting roots. Both of the DOA and the primary signals are determined.
The proposed algorithm averts the error created by sparse reconstruction based on grid
partition, and it has a preferable performance under the circumstance of low SNR and
small samples. As the process of the optimization, we still have a great amount of
computation, how to lower the calculation to improve the efficiency is worthy of going
on researching.
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