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Abstract. The detector which is devoted to detect the abnormal events in the
immune-based instrusion detection system (IDS) is absolutely necessary. But,
some problems in the detector set need to be solved before detection, and at the
same time, the research in the security vulnerabilities detector optimization is
important. In this paper, inspired by the species’ co-evolution in nature and the
Monte Carlo method, An algorithm of immune detector optimization is pre-
sented: co-evolve among detector subsets, estimate the coverage rate by Monte
Carlo to end the optimization. Getting a conclusion by the experimental tests is
that the security holes can be fewer by the algorithm, and less detectors can be
used to achieve more accurate coverage of non-self-space.
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1 Introduction

Intrusion detection system is a significant component of network security. The basic
problems in Intrusion detection can be seen two problems: one is that give an element
of the network, the other one is that divide it into normal or abnormal data [1]. Being a
classical subfield of artificial intelligence, it is a relatively new territory which is the
artificial immune system (AIS) that attempts to create some mechanisms in the bio-
logical immune system (BIS) which is a self-adaptive, self-organized, and self-learning
protection system [2]. The task of IDS can be considered as analogous to the BIS, while
both methods are designed for the detection of abnormal behavior which is in violation
of the established policy properly. So, many models and methods in AIS are used in the
field of intrusion detection. The immune IDS has achieved great successes [3].

The immune detectors are the most important ingredient in immune IDS, which
ensures the detection performances, and gets the candidates through Self-setting tol-
erance training by the NSA primarily [4]. On the based of the representation method of
self and detector: binary and real-valued, NSA is devided into binary NSA (BNS) and
real-valued NSA (RNS). BNS is hard to handle many application programs which are
normal to be expressed in the real-valued space. So that, the present research mainly
focuses on the representation of real-valued [5]. However, because of the randomness
and incompleteness of candidates, security holes are difficult to solve effectively (the
uncovered nonself space), and spending too much time on the detector generation [6].
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For these problems, using the theory of cooperative evolution of biology and the Monte
Carlo method for reference, this paper come up with an immune detector optimization
algorithm with co-evolution & Monte Carlo, which uses the subsets of detectors to
co-optimization by the representative individuals, and assess the scope of the coverage
of detectors by the Monte Carlo method to improve detectors’ distribution.

The remaining structure of the article is as follows: Sect. 2 is that we analyze the
flaw in the detectors and the results. Section 3 introduces the detector optimization
algorithm in detail. The experiment was carried out in Sect. 4. Finally, the Sect. 5 is
some concluding remarks by the experiment.

2 Problem Analysis

2.1 Holes and Overlapping

The detectors have two problems which are a pair of contradictions: holes and over-
lapping. For a better coverage, the detectors’ number should be large enough which can
bring about the overlapping. For less overlapping rate, the detectors should be less
which can bring about the holes. In the real-valued space, these problems are
unavoidable.

2.2 Problems of Boundary Detectors

In the boundary between self and nonself region, assignment of each detector’s radius
is a very difficult question. And the detectors can not cover the boundary well which is
too narrow, which is referred to boundary holes problem. A classical solution is
enlarging radius of these detectors properly. But the “properly” can not be controlled
correctly and lead to the intrusion problems which can increase false alarm rate in
detection stage. As it was remarked in a previous column, V-detector with
boundary-aware by Zhou solves the intrusion better, but the boundary overlapping is
Wworse.

2.3 Multi-area of Self/Detector Set

The self/detector region was almost deemed to be a whole in the real-valued
shape-space. However, as a matter of fact, the attribute values of self/detector almost
are some statistical data. Therefore, multi areas may make up to be the self/detector
region. We should consider this character in optimizing the self/detector for a better
result.

3 Detector Co-optimization

After analyzing the main problems which are existing detectors, inspired by the
co-evolution of species in nature, a detector co-optimization algorithm with
co-evolution & Monte Carlo (abbr. DOCEMC) to be raised: the detectors are divided
into different subsets, optimize process within every subset taking advantage of the
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individuals which are representative in other subsets and select the combination of
the every subset to form the final mature detector set in the end. In the process, the
Monte Carlo method monitors the coverage of detectors in real time and serves as the
“trigger” of algorithm termination. The algorithm can be stated in Fig. 1 and the
concrete processes are expatiated as follows:
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Fig. 1. Algorithm flowchart

Start. Using random method, a candidate is formed and the initial set of detectors is
generated: D by RNS.

Adjusting Detectors. For each detector: d; (i = 1, 2,..., N;), use the closest distance to

its self for adjusting its radius:

di .r=AC (di; sr_zearest) _ s{learest or (1)

L 1

where AC () is the affinity calculation formula.

Purification. Cancel the low-performance samples which are replaced by others using
V-detector in every subset.
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Classifying. Set the original detector to different subsets D = {D,, D,, ..., D,,}. The
quantity of subsets are m in the D. Divide the detector set by using the threshold
partitioning.

Step 1. Set a threshold A for distance. The first original partition is d by taking a
random detector: D, (D =D — {d}, d € D;,m =1, the m can be confirmed after
classifying).

Step 2. For each D; (1 <j<m), Check the rest of the detectors: d; (d; € D — Y;.": 1Dy)
by RNS. If the 4 is more than the distance. It means they belong to the same partition
(die€D;j,1<j<m). If mnot, take it as a mnew partition: D, m+
+(d; € Dj+1,2§j+1§m).

Step 3. If D # (), go to step 2.

Choosing Representatives. Get the central element in the every subset. Afterwards,
ensure the individuals which can be best representative to the each of the remaining
subsets.

(i) Ensuring the basic element in the every subset. In the every subset, D;, get the
average of each attribute and search out the individual which is the nearest to that
average vector as the basic element, d;.

(i) Select the best individuals. In the every subset D;, the best individual which is
defined to the each of the remaining subsets is the farthest distance by calculating
the distance of the each sample to the each of the remaining subsets: dij € D;, and
j=12,..,i-1i+1,....m

Co-evolution. Take advantage of the individuals which can be representative well and
the optimization procedure of every subset based on coevolution is realized. In the
every subset D;, use the dl-j(i =1,2,....j—1,j+1,...,m) to count the average vector
of d; and d!, becoming candidate dj. Deal with RNS for self-established tolerance test.
If passing the test, its radius will be ascertained by Formula 19, and examined whether
other detectors are covered by affinity calculation: eliminate all those covered; if it is a
test failure, delete it.

Monte Carlo. If the process is from the formula 2 to the end state, turns to
GROUPING.

i Xp(x)
co)~ m— 21?1:1 Xs(xi)

In the detector set, Xp(x;) shows the number of points. In the self set, Xs(x;) shows
the number of points:

(2)

Xp () = { 1, ifx;eD

0, ifx;¢D (3)



338 X. Liang et al.

—_

, ifx; €8

Xs(xi) = {o, ifx; ¢S “)

Grouping. Put all the subsets D;(j = 1,2,...,m) together to be the final set of the
mature detectors:

D=Y",D (5)

4 Experiments

This paper detects the availability of the algorithm by two data sets: using the set of
2-dimensional data to test the optimal intuitive performances; making an examination
for the detection performances of the final best detector set and initial detector set by
Fisher’s Iris Data set.

4.1 Experiments in Two Dimensional Data Sets

The pentagram data set which is often used and contains 198 samples which in pentacle
shape is adopted in this experiment [7]. For all the samples of the experiment, they
build the set by themselves, which are shown by Fig. 2(a). After the process of RNS,
RNS generates 100 detectors, which are shown by Fig. 2(b). By the figure, we can find
many security vulnerabilities. Then, 600 detectors are generated by the same method
continuously, which are shown by Fig. 2(c). By the figure, we can find the problem of
the security vulnerabilities has been reduced, but more detectors produce more inac-
curate points. Finally, we used 100 samples by DOCEMC which mentioned above to
optimize the detector set, and the result is shown by Fig. 2(d). By the figure, we can
find that the quantity of the detectors are reduced (quantity: 43) obviously and the
method solves the security vulnerabilities.

Fig. 2. Results of detector distribution: (a) initial self set; (b) detectors by RNS (num: 100);
(c) detectors by RNS (num: 600); (d) optimized detectors by DOCEMC (num: 43).
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4.2 Fisher’s Iris Data Set Experiments

The Fisher’s Iris data which includes three subsets of data is a famous statistic of Iris
flower. Each subset represents one kind of the flower, namely Setosa, Versicolor and
Virginica. There are 50 samples in every group, and there are 4 attributes as calyx,
calyx width, petal lenth and petal width (units: cm) in each sample. This data set has
been used for to the abnormal detection.

Two classes (Versicolor and Virginica) of the data sets are semblable On the
distribution through analyzing, however, class Setosa is not the same distribution in
spatial. Make the Setosa to be the self-set in the experiment. Veriscolor and Virginica
are the exception events. And employ all the data to check the Detector performance.
Firstly, produce 100 detectors with RNS as original detector. Secondly, use the algo-
rithm presented in the paper to optimize them. Finally, check the original and optimize
detector set with the test sets. Table 1 shows the average of 10 times. As it is shown,
RNS-generated intimal detectors have poor performances, while the performences are
observably improbed and the detectors have smaller numbers after the optimization.

Tab. 1. The comparison between two detector sets in detecting performances

Algorithm | Detector | Detection rate (%) False alarm rate (%)
Mean | Standard deviation | Mean | Standard deviation

RNS 100 58.4 |7.8 821 |55

DOCEMC | 37 979 |14 197 |19

5 Conclusions

The optimizing algorithm of the detectors based on Monte Carlo method and
co-evolution is proposed in this article. An ideal solution is provided to resolve the
deficiencies in real-valued detectors by using the inter-effective relationship between
sub-populations to seek the optimal individuals and optimize the subset. The experi-
mental consequences indicate that the algorithm can replace the non-self space with
better detecors, sovling the security vulnerabilities and decreasing the quantities of the
detecors, making the detector’s performance better.
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