
Prediction Model Based Failure Time Data
for Software Reliability

Peng Lin1,2(B), Xu Tian1, Xiaojuan Wang1, Xu Cao1, Jiejing Cao1, Jianli Li1,
and Yan Gong1

1 Software Testing and Evaluation Centre, China Electronic Equipment of System
Engineering Institute, Beijing 100141, China

paul-lim@163.com
2 Academy of Military Sciences PLA China, Beijing 100091, China

Abstract. Since all the defects cannot be detected within a finite soft-
ware testing process (STP), the failure data should be wisely used to
estimate the potential defects for software reliability. Therefore, a stan-
dard graphical methodology (GM) model is proposed for software reli-
ability, in which failure data of time domain is utilized to predict the
potential defects. First, non homogeneous and compound Poisson pro-
cess is involved to model the failure time during STP. Then, GM model is
utilized to predict the potential defects. Further, the software reliability
is estimated based on GM model. Finally, compared with the traditional
models, GM model can reach an improvement of 30% relative gain on
average.

Keywords: Defect prediction · Poisson process · Data fitting
Software reliability

1 Introduction

As the development of software industry, the scale of software can be increasing
day by day. In a typical system environment of software development, the soft-
ware is programmed by a development term. Once a software release is generated,
it should be assigned to a testing term, which should verify the release meets
the design specifications restrictly. A software release can be a small program,
or a large integrated system consisted by a group of subsystems. The testing
term tests the software by applying necessary operation to detect the potential
defects, which can find the failures of the software against to the design spec-
ifications. Generally, the testing activity is limited by a pre-determined time
and a pre-determined number of testers. However, it is not feasible to discover
every potential defects in a finite software testing process (STP). Therefore, the
software reliability attracts more and more attentions [1–4].

Software reliability can be defined as the probability that a software operates
without any failure within a specified time by specified operating. Software relia-
bility can be obtained from the testing progress during the software development
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

G. Sun and S. Liu (Eds.): ADHIP 2017, LNICST 219, pp. 265–274, 2018.

https://doi.org/10.1007/978-3-319-73317-3_32

266 P. Lin et al.

[1]. When one defect is detected and repaired during STP, the potential defects
in the code will decrease, which means the defect detection rate is against to the
number of detected defects [2] as show in Fig. 1.

Fig. 1. Defect detection in software testing process.

Based on the detection defects, we can determine whether the program can
be released, or more testing time is necessary. The number of failures can be
used to estimate the software, which should be reported to our customers before
operating the software [3]. The estimation can help us to evaluate the necessary
time for software testing.

There are always some constraints limit the software testing time, especially,
the constraint of the time-consuming to release a software system under busi-
ness pressure [4]. Therefore, software reliability modeling is proposed to evaluate
both the current and future reliability. In particular, defect prediction can help
determine when the software development should be terminated.

Traditional software reliability models can be grouped into three classes.
First, the amount of defects is finite within a finite amount of code [5], by

which more code means more defects, so as the defect detection rate too. The
amount of detection defects during STP are explicitly made in some models,
while others assume that these defects data can be fitted statistically by the
software reliability growth model.

Second, a compound Poisson process (CPP) [6,7] is used to model the clusters
of detected defects, where the defects are grouped in a given time interval. CPP
not only try to predict the remaining failure rate after a limited testing time,
but also can forecast the potential detects after a given STP.

Third, the number of defects is infinite in log Poisson model assumption [8].
Further, Log Poisson models make assumptions that all the detected defects are
perfectly repaired. However, it is difficult to evaluate the affection of the model
assumptions.

Although infinite assumption is questionable, it is reasonable that the poten-
tial defects will exist until be found and repaired [9].

Prediction Model Based Failure Time Data for Software Reliability 267

Focus on large-scale software or integrated system within STP, a defect pre-
diction model basing on standard graphical methodology is proposed in this
paper, where the defect data of time domain is utilized. Three actual testing
data sets of time domain are used to compare GM model with the classical G-
O, CPP and M-O models, both the fitting and prediction results of GM model
perform better than the others.

2 Poisson Models

2.1 Non Homogeneous Poisson Process

Non homogeneous Poisson process (NHPP) has been proposed as software reli-
ability model [9,10]. The Poisson parameter λ(t) (where t > 0) in NHPP model
is a time dependent function.

Defects of the software cause failures at random times. Assume N(t) is the
amount of detected defects within time t, which should be a cumulated testing
time (either CPU time or calendar time). Then, let λ(t) be the probability of
the amount of detected defects within a time interval t. Further, the probability
of n failures can be calculated as

P{N(t) = n} =
λn(t)

n!
e(−λ(t)). (1)

Therefore, λ(t) should be the key function in NHPP. There are two kind of
NHPP based models, which are G-O model and M-O model [5].

In G-O model [9], let λ(t) be the expected amount of total defects, which are
detected within time t can be calculated as

λ(t) = α(1 − e(−βt)), (2)

where β is the detection rate for each individual defect. The parameter α is the
expected amount of total defects in G-O model, and

λ(t) = αP (t), (3)

where P (t) is the cumulative distribution function. Then, P (0) = 0, which means
that no defect is detected before the software testing process (STP) starts. On
the other side, P (∞) = 1, then, λ(∞) = α, and α is the amount of total defects,
which should be detected after a finite STP.

M-O model [9] assumes that one software may have an infinite number of
defects. M-O is a log Poisson model, where the detected number of defects after
cumulated testing time t is NHPP. The λ(t) in M-O model can be calculated as

λ(t) =
1
θ

log(λ0θt + 1). (4)

Both the operational performance of G-O and M-O depends on the lasting
time of STP. Longer STP leads to better performance. Although the time spent
in STP delays the product release, which leads to additional costs, the cost of
repairing a defect after software release should be more expensive than during
STP [7]. Therefore, the defect prediction can be optimal release time to minimize
cost by determining STP time.

268 P. Lin et al.

2.2 Compound Poisson Process

The failures of CPP model are detected and grouped in clusters [11], which are
found following a Poisson process. Further, a compounding distribution is used
to model the clusters size, which follows a geometric distribution [12]. Further,
the amount of detected defects follows a compound Poisson process, and the
probability function is given by

P{(N(t) = n)} =
m∑

k=1

(λt)k

k!
e(−λt)f∗k{X1 + X2 + · · · + Xk = n}, (5)

where, f∗k{X1 + X2 + · · · + Xk = n} is the sum of k independent identically
distributed random variables Xi, which follows a distribution function f(X).
Since the distribution function f(X) models the size of failures cluster, the mean
value can be given by

E[N(t)] = λtE[X]. (6)

CPP model is easier to implement, which can adaptively change to fit differ-
ent projects. The failure rate of CPP model is constant. However, as the failure
rate will update time to time, the CPP model can not predict a long time period.
Then, the predicted failure rate of CPP is a constant, while it is dependent on
time in NHPP model.

3 Prediction Model

A standard graphical methodology (GM) [13] is proposed for defect prediction.
There are three steps to realize defect prediction. First, the data of the cumulated
failure times should be ascending ordered. Further, the two necessary parameters
of the theoretical exponential distribution should be estimated too. Finally, a
defect prediction basing on the theoretical distribution can be obtained.

The cumulated failure times are ascending ordered, then, associate a proba-
bility with ascending ordered failure time ti by

pi =
(i − 1

2)
n

, (7)

and further associate with the points

zi = (ti, pi), i = 1, · · · , n. (8)

The cumulative distribution function [14] for the two-parameter exponential
distribution can be

F (t) = 1 − e− t−μ
λ , (9)

where λ is the respected mean, and μ is the respected shift. Then, the λ(t) in
GM model can be given by

λ(t) = αe− t−μ
λ . (10)

Prediction Model Based Failure Time Data for Software Reliability 269

Further, let Q(pi) be the theoretical distribution and given by

F (Q(pi)) = pi. (11)

And then,
Q(pi) = F−1(pi), (12)

for the two-parameter exponential distribution,

Q(pi) = −λln(1 − pi) + μ. (13)

4 Software Reliability

A software reliability model is defined by NHPP [1,2], where N(t) represents the
amount of detected defects by cumulated testing time t during STP. Further,
the failure intensity function of the software reliability model is defined by

F (t) =
dλ(t)

dt
. (14)

The probability of the detected defects N(t) has the value n is given by

P{N(t) = n} =
∏

i

P{N(ti) = i}, i = 1, · · · , n. (15)

Further, the reliability of ti based on the last failure time ti−1 can be obtained
as

P{N(ti)|N(ti−1)}
= P{N(ti) > i − 1|N(ti−1) = i − 1}
= 1 − P{N(ti) ≤ i|N(ti−1) = i − 1}.

(16)

5 Comparison

5.1 Data Sets

Three are three classical models selected to compare with GM model, includ-
ing G-O, CPP and M-O model. Three actual testing data sets [3,5,15] of time
domain are used to estimate the performance of the compared models.

Each data set is sorted and separated into the fitting part and the estimation
part. The fitting part data takes a part of 90% percent in the data set, which
is the lower part of time domain. The estimation part is about 10% of the data
set, which is the higher part of the time domain. The fitting part data is used to
compare fitting performance. The estimation part data is used to compare the
prediction performance.

The first data set contains 17 defects with cumulated failure time [15], and
then, the fitting part has 15 defects and the estimation part has 2 defects. The
second data set contains 30 defects [5], in which the fitting part has 27 defects
and the estimation part has 3 defects. There are 136 defects in the third data
set [3], where the fitting part has the lower 122 defects of time domain and the
estimation part has 14 defects.

Therefore, the first data set is the smallest one in the three actual data sets,
the second data set is the middle one, and the third data set is the largest one.

270 P. Lin et al.

5.2 Performance Estimation

The four referenced models are compared on the three actual data sets, and the
result of the first data set is shown in Fig. 2.

Fig. 2. Performance on the first data set

Further, the second result of the four models is shown in Fig. 3.
At last, the third result of the four models is shown in Fig. 4.
Each fitting curve are separated into two parts. The left part is the fitting

result marked with fitting, and the right part is the prediction result marked
with prediction.

The mean square error (MSE) is used to compare the performance of the
four models, the MSE can be calculated as

MSE =

√∑n
i=1 (et(i) − pt(i))2

n
, (17)

where et(i) represents the estimated amount of expected defects at time t(i),
which can be a fitting or prediction result. pt(i) represents the real amount of
detected defects at time t(i), which can be picked up from the actual testing
data sets of time domain.

The results of fitting and prediction performance on the three data sets are
demonstrated in Table 1.

On the first data set, the prediction MSE of GM model is the smallest.
Although GM model performs the best on the prediction MSE, both the fitting
and average MSE are bigger than the other models. Therefore, the average MSE
of GM model performs worst on the smallest data set.

Further, the average MSE of GM model is 1.397 on the second data set,
which is a little bigger than CPP model, but smaller than the G-O and M-O

Prediction Model Based Failure Time Data for Software Reliability 271

Fig. 3. Performance on the second data set

Fig. 4. Performance on the third data set.

model. The third data set is the largest one, the average MSE of GM model is
just about 3.950, which is much smaller than the others.

At last, the average MSE of GM model performs the best on the three data
sets in the compared models. Since the defect number of the third data set is
larger than both the first and second ones, the larger data set could lead to more
accuracy. With the number of defects increasing, the performance of GM model
should be always better than the other models.

272 P. Lin et al.

Table 1. Performance results

Data set G-O CPP M-O GM

1 Fitting MSE 2.210 2.679 2.227 3.211

Prediction MSE 3.775 3.303 3.841 3.158

Average MSE 2.993 2.991 3.034 3.185

2 Fitting MSE 2.047 1.668 2.815 1.738

Prediction MSE 0.934 1.111 5.715 0.957

Average MSE 1.491 1.389 4.265 1.397

3 Fitting MSE 8.738 10.562 8.532 5.993

Prediction MSE 2.684 2.881 10.168 1.907

Average MSE 5.711 6.721 9.350 3.950

5.3 Reliability Estimation

To further estimate the defect prediction, the reliability is compared by the last
data of both fitting part and estimation part. The last data of both the fitting
part e0.9N and prediction part e1.0N are picked up, and then, the MSE is used
to compare the prediction accuracy and given by

PMSE =

√
(e0.9N

N − 0.9)2 + (e1.0N

N − 1.0)2

2
, (18)

where N is the size of the data set.
The reliability results of the four models on the three actual data sets are

shown in Table 2.

Table 2. Reliability results

Data set G-O CPP M-O GM

1 Fitting P0.9N 0.746 0.775 0.742 0.786

Prediction P1.0N 0.754 0.781 0.750 0.787

PMSE 0.205 0.178 0.209 0.171

2 Fitting P0.9N 0.968 0.976 1.043 0.965

Prediction P1.0N 0.986 0.995 1.179 0.989

PMSE 0.049 0.054 0.162 0.047

3 Fitting P0.9N 0.922 0.935 0.950 0.908

Prediction P1.0N 0.964 0.983 1.095 0.974

PMSE 0.030 0.027 0.076 0.019

On the first data set, both P0.9N and P1.0N of GM model are bigger than
the other three models, which means bad performance on the smallest data set.

Prediction Model Based Failure Time Data for Software Reliability 273

However, both on the second and third data sets P0.9N and P1.0N of GM model
are the smallest ones. Therefore, GM model perform better both on the middle
and largest data sets than the three compared models.

Further, PMSE is 0.171, 0.047 and 0.019 respectively. Therefore, PMSE of
GM model is the smallest in the compared models, which means the best fitting
accuracy at the lasting data of time domain.

Since the GM model performs better both in the performance and reliability
results, the relative gain G is formulated as

G =
CPP,M−O∑

∗=G−O

P ∗
MSE − PGM

MSE

P ∗
MSE

. (19)

The relative gain of GM model on the first data set is 13.15%, 29.90% and
47.10% on the second data set. Then, an average relative gain 30.05% can be
reached by GM model, which shows an improvement compared to the classical
G-O, CPP and M-O models.

6 Conclusion

A standard GM model is proposed to predict potential defects for software reli-
ability in this paper. By fitting defect data of time domain, both the number of
defects and failure rate can be estimated by GM model theoretically. Further,
GM model is used to estimate the software reliability during STP, which can help
to determine when to terminate the STP and release the software. Finally, three
traditional models are compared with GM model on the three actual testing
data sets. The performance comparison shows that GM model performs much
better than the others, and an average 30% relative gain can be obtained for
software reliability estimation.

References

1. Wood, A.: Software reliability growth models: assumptions vs. reality. In: Interna-
tional Symposium on Software Reliability Engineering, pp. 136–141 (1997)

2. Almering, V., von Genuchten, M., Cloudt, G., Sonnemans, P.J.M.: Using software
reliability growth models in practice. IEEE Softw. 24, 82–88 (2007)

3. Musa, J.D., Iannino, A., Okumoto, K.: Software Reliability: Measurement, Predic-
tion, Application. McGraw Hill, New York (1987)

4. Sahinoglu, M., Glover, S.: Economic analysis of a stopping-rule in branch coverage
testing. In: International Symposium on Quality Electronic Design, pp. 341–346
(2002)

5. Akuno, A.O., Orawo, L.A., Islam, A.S.: One-sample Bayesian predictive analyses
for an exponential non homogeneous Poisson process in software reliability. Open
J. Stat. 4, 402–411 (2014)

6. Sahinoglu, M.: Compound-Poisson software reliability model. IEEE Trans. Softw.
Eng. 18(7), 624–630 (1992)

274 P. Lin et al.

7. Xianghui, Z., Lin, L., Yafang, H., Lei, Z., Yuangang, Y.: Software reliability mea-
surements based on compound Poisson processes. J. Tsinghua Univ. Sci. Technol.
53(12), 1743–1749 (2013)

8. Musa, J.D., Okumoto, K.: A logarithmic Poisson execution time model for software
reliability measurement. In: International Conference on Software Engineering, pp.
230–238 (1984)

9. Barraza, N.R.: Compound and non homogeneous Poisson software reliability mod-
els. In: ASSE 2010–11th Argentine Symposium on Software Engineering, pp. 461–
472 (1984)

10. Chang, Y.: An alternative reliability evaluation of non homogeneous Poisson pro-
cess models for software reliability. Int. J. Qual. Reliab. Manag. 17(7), 800–811
(2013)

11. Sahinoglu, M., Can, U.: Alternative parameter estimation methods for the com-
pound Poisson software reliability model with clustered failure data. Softw. Test.
Verif. Reliab. 7(1), 35–57 (1997)

12. Barraza, N.R.: Parameter estimation for the compound Poisson software reliability
model. Int. J. Softw. Eng. Appl. 7(1), 137–148 (2013)

13. Chambers, J.M.: Graphical methods for data analysis. Biometrics 40(2), 493–499
(1983)

14. Aiex, R.M., Resende, M.G., Ribeiro, C.C., et al.: Probability distribution of solu-
tion time in GRASP: an experimental investigation. J. Heuristics 8(3), 343–373
(2002)

15. Lohmor, S., Sagar, B.B.: Overview: software reliability growth models. Int. J. Com-
put. Sci. Inf. Technol. 5(4), 5545–5547 (2014)

	Prediction Model Based Failure Time Data for Software Reliability
	1 Introduction
	2 Poisson Models
	2.1 Non Homogeneous Poisson Process
	2.2 Compound Poisson Process

	3 Prediction Model
	4 Software Reliability
	5 Comparison
	5.1 Data Sets
	5.2 Performance Estimation
	5.3 Reliability Estimation

	6 Conclusion
	References

