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Abstract. Dynamic Bayesian Networks (DBNs) is a powerful graphical model
for representing temporal stochastic processes. Learning the structure of DBNs
is the fundamental step for parameter learning, inference, application etc. In
some cases, such as computational systems biology, learning the structure of
DBNs facing the two challenges (1) experimental settings only capture few time
series and steady state measurements. (2) the knowledge about DBNs is
uncertainty, rare and even with conflict. The paper considers the time series data,
steady state and domain knowledge simultaneously, presents a novel algorithm
for learning the structure of DBNs. Compare with single source learning,
empirical experiment shows that learning with hybrid data and domain
knowledges improved the accuracy and effectiveness of the DBNs structure
learning.
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1 Introduction

Dynamic Bayesian Networks (DBNs), also known as dynamic probabilistic network or
temporal Bayesian network, which generalize hidden Markov models and Kalman
filters. The DBNs are widely used in many domains such as speech recognition, gene
regulatory network (GRN) etc. Learning the structure of DBNs is a fundamental step
for parameter learning, inference and application, but learning DBNs is a NP hard
problem [1, 2]. In big data scenario, the structure learning is intractable. Despite of the
computational efficacy barrier, the training set is also required to be large enough. In
some domains, the training set is very noisy and rare, so learning with just one kind of
training data is impractical. Domain knowledge may reduce the inherent uncertainty of
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the DBNs learning. But the domain knowledge is always uncertainty, unclear and even
with conflict. So, combining domain knowledge with training set is a key issue.

This paper presents an algorithm for learning the structure of DBNs with the hybrid
data and domain knowledge. The paper is organized as following: Sect. 2 introduces
related work and research background; Sect. 3 describes the DBNs learning algorithm;
then, Sect. 4 describes the empirical experiment and last section draw the conclusion.

2 Research Background

2.1 (Dynamic) Bayesian Networks

A Bayesian networks (BNs) is a concise representation of joint probability distribution
on a set of random variables [3]. A BNs is defined by a structure G and a family of
parameters h, for short BNs ¼ \G; h[ . G is a directed acyclic graph (DAG), each
node is a random variable in X = (X1, X2,…, Xn), and G encodes the (condition)
independencies, h is the conditional probability distribution (CPD), encoding the
conditional distributions of each node and its parent node

h ¼ fpðXi j pðXiÞ j 1� i� ng ; pðXiÞ is the parent nodes of Xi ð1Þ

Briefly, the joint probability distribution represented by BNs is:

PðX1;X2; . . .:;XnÞ ¼
Yn
i¼1

PðXi j pðXiÞÞ ð2Þ

DBNs extend the BNs by modeling the stochastic variables over time [4–6]. Let
Xt ¼ ðXt

1; . . .;X
t
nÞ t 2 ½1; T� stand for the random variables X at time t. Two tiers

DBNs, obey first-order Markov rules, which means P XtjXt�1; . . .;X0
� � ¼ P XtjXt�1

� �
for all t > 0.

DBNs was composed of two slices: initial network BN0 and transition network
BN!. BN0 encode the probability distribution of P(X0), which is the initial state of the
temporal process. For each time slice, BN! define the probability of states translate
form t−1 to t, P(Xt |Xt−1). With these assumptions, the joint probability distribution of a
time series can be written as

PðX0;X1; . . .;XnÞ ¼ PðX0ÞQT
t¼1

PðXtjXt�1Þ

¼ Qn
i¼1

PðX0
i jp0ðX0

i ÞÞ
QT
t¼1

PðXtjXt�1Þ

¼ Qn
i¼1

PðX0
i jp0ðX0

i ÞÞ
QT
t¼1

PðXtjp!ðXtÞ

¼ Qn
i¼1

PðX0
i jp0ðX0

i ÞÞ
QT
t¼1

Qn
i¼1

PðXt
i jp!ðXt

i ÞÞ

ð3Þ
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Figure 1 gives an example of DBNs. The distribution for this DBNs is

PðX0;X1; . . .;XnÞ ¼ PðX0
1ÞPðX0

2 jX0
1ÞPðX0

3 jX0
4ÞPðX0

4 jX0
1 ÞQT

t¼1
PðXt

1 jXt�1
2 ÞPðXt

2 jXt�1
1 ;Xt�1

4 ÞPðXt
3 jXt�1

4 ÞPðXt
4 jXt�1

3 Þ ð4Þ

2.2 Literature Review

Structure learning the BNs/DBNs can be considered as the general problem of selecting
a probabilistic model that explains a given set of training data. a wealth of literature has
been presented that seeks to understand and provide methods of learning structure from
data.

Classical approaches for learning the structure can be classified to three main
methods: [7] (1) A score-searching approach; (2) A constraint-based approach; (3) A
dynamic programming approach;

Score-searching based approach, which define the task as an optimization problem.
Based on a scoring function to evaluates different structures G related to a data set D (in
the rest D was omitted for the concision). There are many score criteria such as :
BD/BDe [8, 9], MDL [10] and BIC [11];

Constraint based approach define the learning task as constraint satisfaction
problem. Using conditional independent test to find the independent relationships in
data D, then construct a DBNs satisfied such conditional independence [12]. Each
approach has its specialty: the constraint based methods are usually more efficient when
the number of variables is large. However, when the data is noisy, the score-searching
algorithms is more robust.

Aside from the two major techniques of structure learning that have been discussed,
there is a third method that is like the score-and-search approach, but does not have the
search aspect. These methods use dynamic programming to compute optimal models
for a small set of variables and in some cases combine these models.
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Fig. 1. Example of DBNs
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DBNs, as temporal models, are best learned from temporal data. But in some cases,
such as bioinformatics and computational systems biology studies, experimental set-
tings do not always permit collecting massive time series measurements and may only
capture few time series and steady state measurements (Steady state measurements can
be considered as snapshots of the long-run behavior of a system.), another challenge is
that the domain knowledge is uncertain and sparse.

3 Learning Method

3.1 Formalize the Problem

Learning DBNs from steady state, temporal data and domain knowledge can be for-
malized as maximize the joint distribution:

P DBNs; Evidenceð Þ ð5Þ

where Evidence = {Data, Prior knowledge}, Data = {DT,DS}, DT is temporal data,
DS is steady state, DBNs ¼ fG; hg here we only focus on transition network.

3.2 Steady State and Temporal Data

Equation (2) characterizes temporal behavior of DBNs over a given time interval. With
the following Eqs. (5) and (6), the DBNs structure learning with Steady state and
temporal data was formalized.

PðDBNjDT ;DSÞ ¼ PðDT ;DSjDBNÞPðDBNÞ
PðDT ;DSÞ

/ PðDT ;DSjDBNÞPðDBNÞ
ð6Þ

PðDjGÞ ¼
Z
h
P DjG; hð ÞP hjGð Þdh

¼
Z
h
P DT ;DSjG; hð ÞP hjGð Þdh

ð7Þ

Firstly, define some notations: all states for DBNs: S ¼ fSqjq 2 ½1;N�g; Size of S:
N; State for Xi: S(XiÞ ¼ fSkðXiÞjk 2 ½1;Ni�g; State for parent nodes of Xi:
SðpiÞ ¼ fSjðpiÞj j 2 ½1;Npi�g; hi;j;k ¼ PðXt

i ¼ SkðXiÞjXt�1
i ¼ SjðpiÞÞ. For example: in

Fig. 2. Assume all nodes are binary (0,1), then S ¼ fð0000Þ; ð0001Þ; . . .g;
N = 24 = 16; S(X2) = {0,1}, N2 = 2; p2 ¼ fX1;X3;X4g; Sðp2Þ ¼ fð000Þ; ð001Þ;
ð010Þ; ð011Þ; . . .g, Np2 ¼ 8; h2;5;1 ¼ PðXt

2 ¼ 1jXt�1
1 ¼ 1;Xt�1

3 ¼ 0;Xt�1
4 ¼ 0Þ.

Let M denote the state transition matrix, each element in M can be calculated with
Eq. (8).
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Mv;q ¼ PðXt ¼ SqjXt�1 ¼ SvÞ ¼
Yn
i¼1

PðXt
i ¼ xi;qjpt�1

i ¼ Spi;vÞ

¼
Yn
i¼1

hi;vj;qk

ð8Þ

The steady state S* has the property S * M = S*, each element in S* can be
calculated with Eq. (8).

lim
t!1MðtÞ

v;q ¼ S�q ;Where MðrÞ
v;q ¼ PðXtþ r ¼ SqjXt ¼ SvÞ ð9Þ

Theorem: A finite state homogeneous Markov process corresponding to a DBNs,
possess a unique stationary distribution, independent of the initial distribution if
hi;j;k [ 0, 8i 2 1; n½ �; j 2 ½1;Npi�; k 2 1;Ni½ � [13].

The likelihood of a DBNs structure G give both temporal data and steady state is:

PðDjGÞ ¼
Z
h
P DT ;DSjG; hð ÞP hjGð Þdh ð10Þ

where PðhjGÞ ¼ Qn
i¼1

PðhijpðXiÞÞ ¼
Qn
i¼1

QNpi

j¼1
Pðhi;jjpiÞ.

The prior distribution is assumed to be Dirichlet distribution (conjugate prior for
multinomial), a: the prior for h

Fig. 2. Accuracy of the experiment. TS-time series; SS-steady state; DK-domain knowledge
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Pðhi;jja; piÞ ¼ 1
BðaÞ

QNi

k¼1
h
a
i;j;k

�1
i;j;k

; BðaÞ ¼
QNi
k¼1

Cðai;j;kÞ

Cð
PNi
k¼1

ai;j;kÞ

CðxÞ ¼ ðx� 1Þ! if x is a positive integerR1
0 tx�1e�tdt else

� ð11Þ

To maxis posteriori ~h with temporal data DT is straight forward, but for steady state
DS we cannot compute ~h with steady state directly, optimize both G and with DS is
intractable. So, we need an approximation, replace the parameter from steady state with
the parameter from temporal data ~hS � ~hT .

3.3 Domain Knowledge

To learning the structure of DBNs means learning both G0 and G!. Based on the
score-searching approach, we define a score function. Suppose the number of time
series is M, the NO. l sample is Dl which has Tl different time point. the score function
defined as following:

log PðDjGÞ

¼
Xn
i¼1

Xqi
j¼1

Cðai;j)
Cðai;j þNi;jÞ

Xri
k

Cðai;j;k + Ni;j;k)

Cðai;j;kÞ
ð12Þ

N 0
i;j;k ¼

PM
l¼1

vðX0
i ¼ k; p0ðX0

i Þ ¼ jjDlÞ; N !
i;j;k ¼

PM
l¼1

PTl
t¼1

vðXt
ii ¼ k; p! ¼ j jDlÞ,

Ni;j ¼
Pri
k¼1

Ni;j;k, if x is a positive integer, CðxÞ ¼ ðx� 1Þ!
a1; � � � ; ar is the hyper parameter for Dirichlet distribution.
The domain knowledge is used to calculate the prior distribution. Domain

knowledge about the structure was encoded with matrix K. The initial network K0: if
there should be an edge from vi to vj then kij is 1; if there should not exist an edge kij is
0, otherwise kij is −1 for unknown.

K0 ¼
k0i;j ¼ 1; if v0i ! v0j
k0i;j ¼ 0; if no edge betwen v0i and v

0
j i 2 ½1; n�; j 2 ½1; n�

k0i;j ¼ �1; if unknow for v0i and v
0
j

8><
>: ð13Þ

The confidence of the knowledge defined with matrix C0 ¼ c0i;j 2 ½0; 1�, the dis-
tance matrix D defined as

D0 ¼ DistðK0;G0Þ ¼ d0i;j ¼ 0; if k0i;j ¼ �1 or k0i;j ¼ g0i;j
d0i;j ¼ 1; if k0i;j 6¼ g0i;j

�
ð14Þ
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Each structure can be weighted as following:

W0 ¼

Pn;n
i¼1;j¼1

c0i;jd
0
i;j

n2 � Pn;n
i¼1;j¼1

Iðk0i;j ¼ �1Þ
; where IðxÞ ¼ 1; if x ¼ true;

0; if x ¼ false;

�
ð15Þ

For multiple domain knowledge, named the number of knowledge sources Q, there
are a set of knowledge matrix and correspond confidence matrix. The weight of the

knowledge is defined as L1,…,LQ, Li 2 ½0; 1�; PQ
i¼1

Li ¼ 1; i 2 ½1;Q�, then the W for the

structure G is a weighted average: W0 ¼ L1 �W0
1 þ . . . þLQ �W0

Q.
The score function is defined as below

Score Gð Þ ¼ BIðD;GÞ � bW ð16Þ

The b control the ratio that data and domain knowledge effect on learning
procedure.

4 Experiment

To test the behavior of the algorithm, several artificial data was generated. DBNs with
10, 30, 50, 100, 200 nodes were generated randomly. Training data were computed
with such generative model. Steady state was assumed the state do not change within
30 time steps, time series data and domain knowledge were selected from give model
and data respectively, the ratio for training was kept below 20%. The Fig. 2 given the
accuracy with different given DBNs learning. The average accuracy was increased
from 73.4% to 90.6 with steady state data added and increased another 5% when given
domain knowledge.

This paper presents a novel algorithm for learning the structure of DBNs, which
consider both time series data, steady state and domain knowledge simultaneously,
empirical experiment shows that the proposed algorithm improved the efficiency and
the accuracy of the DBNs structure learning.
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