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Abstract. Recently, the reliability evaluation of data center network
(DCN) is important to the design and operation of DCNs. Extra con-
nectivity determination and faulty networks structure analysis are two
significant aspects for the reliability evaluation of DCNs. The DCell net-
work is suitable for a massive data centers with high network capac-
ity by only using cheap switches. A k-dimensional DCell built with
n-port switches, denoted by Dk,n, is an (n + k − 1)-regular graph. In
this paper, we firstly prove that the extra-h connectivity of Dk,n for
n ≥ 2, κh(Dk,n) = (k − 1)(h + 1) + n if k ≥ 2 and 0 ≤ h ≤ n − 1, and
κh(Dk,n) = (k − 1)(h + 1) + 2n − 2 if k ≥ n + 1 and n ≤ h ≤ 2n − 1,
respectively. What’s more, for any faulty node set F ⊆ V (Dk,n) with
|F | ≤ κh(Dk,n) − 1, we obtain that there contains a large connected
component in Dk,n − F , and the rest of small connected components
have not more than h nodes in total if k ≥ 2 and 0 ≤ h ≤ n − 1 (resp.
k ≥ n + 1 and n ≤ h ≤ 2n − 1). Our result can provide a proper mea-
sure for the reliability evaluation of the DCell network when it is used
to model the topological structure of a large-scale DCN.
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1 Introduction

With the development of web applications such as email, online search, web
game, cloud video, and productivity components such as Map reduce [1] and
GFS [2], huge data center network (DCN) with millions of servers will become
available in some day. Microsoft implied that Azure, Hotmail, Bing, and some
other web services will be storaged by a million servers [3], for instance. With
the remorselessly rising in the scale of DCN, the complexity of a DCN can
disadvantageously impact its reliability. In order to design and operation of a
DCN, proper measures of reliability ought to be sought out. A DCN can be
modeled by a simple connected-graph G = (V (G), E(G)), where V (G) denotes
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the node set with each node denotes a server, and E(G) denotes the edge set with
each edge denotes a link between servers, respectively. What’s more, switches
in a DCN can be identified as transparent devices of network [4]. Therefore, we
can measure the reliability of a DCN (network for short) by using the graph
parameters of its DCN.

The connectivity of a DCN as a traditional measure for the reliability of
DCNs, is the minimum number of nodes eliminated to obtain the graph is dis-
connected or trivial, which is a worst case. In fact, this measure can accurately
reflect the reliability of a small size DCN. However, some DCNs with large size
have shown to can tolerate much more server failures while still keep connected.
In other words, as one of the measures of reliability, the traditional connectivity
would underestimates the ability of reliability of these large DCNs [5].

To counteract the weakness of the connectivity of a simple graph, Harary [6]
proposed the definition of the restricted faulty nodes of a graph. Furthermore,
Fabrega and Fiol [7,8] introduced the concept of extra connectivity and obtained
the extra connectivity of graphs. Given a graph G and a node cut F ∈ V (G),
if each connected component of G − F has not less than h + 1 nodes, then F
is defined an extra-h node cut. The extra-h connectivity of G is the minimum
cardinality of all extra-h node cuts (if exists), can be denoted by κh(G). In a
DCN, the status of the node has meaningless impact on the capability of the rest
of graph when all the neighbors of a node are faulty. Thus, it is reasonable of the
assumption that there is no isolated node on G−F , when we assume it is faulty.
What’s more, the structure study of an incomplete DCN with a large amount
of faulty nodes is closely related to the extra connectivity of a DCN. The large
connected component can be used to execute the operation of the DCN not have
much capability degrade, when a disconnected DCN with massive faulty nodes
contains a large connected component. Therefore, the extra connectivity is great
important to the reliability of DCNs [5].

Since a complete graph Kn is nonseparable, κh(Kn) does not exist with
0 ≤ h ≤ n − 1. Furthermore, if G is not a complete graph, then κ0(G) = κ(G).
Given a nonnegative integer h and graph G, it is quite difficult to calculate
κh(G). As a matter of fact, the existence of κh(G) is still an open problem so far
when h ≥ 1. Only a little research achievements have been obtained on κh(G)
in some particular graphs [5,9–16]. For example, Zhu et al. [9] and Gu and Hao
[10] showed that κ2(Q3

n) = 6n − 7, κ3(Qk
n) = 8n − 12 for n ≥ 3, where Q3

n is
the 3-ary n-cube, respectively. Lin et al. obtained that for the n-dimensional
alternating group graph AGn, κ1(AGn) = 4n − 11, κ2(AGn) = 6n − 19, and
κ3(AGn) = 8n − 28 for n ≥ 5 [11]. For any integer n ≥ 6, Chang et al. proved
that the 3-extra connectivity of an n-dimensional folded hypercube is 4n−5 [12].
For any integers n ≥ 4 and 0 ≤ h ≤ n − 4, Zhu et al. [5] showed that κh(Xn) =
n(h+1)− 1

2h(h+3), where Xn is the n-dimensional bijective connection network.
Furthermore, Yang and Lin studied a sharp lower bound of extra-h connectivity
of Xn which improves the result in [5] for n ≥ 4 and 0 ≤ h ≤ 2n − 1 [13].

Recently, Guo et al. introduced a server-centric DCN named DCell [4], which
have many advantages over traditional tree-based DCN, such as fault-tolerance,
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scalability, reliability, low cost, and so on. What’s more, DCell originated sub-
stitutive design considered the server-centric DCNs, and inspired a lot of novel
DCN structures such as FiConn [17], BCube [18], and CamCube [19]. Some com-
binatorial properties of a k-dimensional DCell built from n-port switches, Dk,n,
such as diameter [4], symmetry [20], broadcasting [4], connectivity [4], restricted
connectivity [21], node disjoint paths [22], one to one disjoint path covers [23],
and Hamiltonian properties [24] have recently been studied. Particulary, these
measurement results indicate that a Dk,n has excellent combinatorial properties.

In this paper, we have obtained the extra-h connectivity of Dk,n for n ≥ 2,
κh(Dk,n) = (k − 1)(h + 1) + n when k ≥ 2 and 0 ≤ h ≤ n − 1 (resp. κh(Dk,n) =
(k − 1)(h + 1) + 2n − 2 when k ≥ n + 1 and n ≤ h ≤ 2n − 1). What’s more,
we explore that there contains a large connected component in Dk,n − F , and
the rest of small connected components have not more than h nodes in total if
|F | < κh(Dk,n) for any two integers k ≥ 2 and 0 ≤ h ≤ n − 1 (resp. k ≥ n + 1
and n ≤ h ≤ 2n − 1).

This paper is organized in this way: We provide some definitions and prelim-
inaries in Sect. 2. In Sect. 3, the extra-h connectivity of DCells are given. In the
end, we conclude this paper in Sect. 4.

2 Preliminaries

We use G to denote a DCN. The node number of G is called the order of G. An
edge of G with two end nodes u, v is denoted by (u, v). For any node v ∈ V (G),
let u be a neighbor of the node v or u is adjacent to the node v if (u, v) ∈ E(G).
If V ′ ⊆ V (G), let G[V ′] denote the sub-graph of G induced by a node sub-
set V ′ ∈ V (G) and let G − V ′ = G[V (G) \ V ′]. Then, let NG(V ′) denote the
neighbor-set of V ′ such that NG(V ′) ∈ V (G−V ′) and let AG(V ′) = V ′∪NG(V ′).

For k ≥ 0 and n ≥ 2, let Dk,n denote a k-dimensional DCell built on n-
port switches. Then, we use tk,n to denote the order in Dk,n with t0,n = n and
ti,n = ti−1,n(ti−1,n + 1) for n ≥ 2, k ≥ 0, and i ∈ {1, 2, . . . , k}. Let I0,n =
{0, 1, . . . , n − 1} and Ii,n = {0, 1, . . . , ti−1,n} with i ∈ {1, 2, . . . , k}. For any
integer 1 ≤ l ≤ k, let V l

k,n = {ukuk−1 · · · ul : ui ∈ Ii,n and i ∈ {l, l + 1, . . . , k}}.
The definition of DCell Dk,n is adopt from [4].

Definition 1. Dk,n is a regular graph with node set V 0
k,n, where a node u =

ukuk−1 · · · u0 is adjacent to a node v = vkvk−1 · · · v0 if and only if there exists
an integer l with

(1) ukuk−1 · · · ul = vkvk−1 · · · vl,
(2) ul−1 �= vl−1,

(3) ul−1 = v0 +
l−2∑

j=1

(vj × tj−1,n) and vl−1 = u0 +
l−2∑

j=1

(uj × tj−1,n) + 1 with

l > 1.

Figure 1 shows the examples of Dk,n with some small n and k. It is clear that
Dk,n is a (n+k−1)-regular graph with tk,n nodes. When all the three conditions
of Definition 1 hold, we define that two neighbor nodes u, v have a differing bit
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Fig. 1. Examples of Dk,n: D0,3, D1,3, D1,2, and D2,2.

of leftmost at position l − 1, denoted by d, the d-neighbor of u can be denoted
by (u)d = v for d ≥ 1. Usually, if u = ukuk−1 · · · u0 is a node in Dk,n, let (u)i

denote the i-th bit of u, and let σ(u, i) = ukuk−1 · · · ui for any 0 ≤ i ≤ k. Clearly,
σ(u, 0) = u. For any α ∈ V l

k,n with 1 ≤ l ≤ k, let Dα
l−1,n denote the graph that

attained by adding the prefix α to address of every node of one copy of Dl−1,n.
Clearly, Dl−1,n

∼= Dα
l−1,n.

In this paper, a set of nodes to be deleted will be denoted as F . Define Fi =
F ∩ V (Di

k−1,n) and I = {i : |Fi| ≥ n + k − 2} for each i ∈ Ik,n. Furthermore, let
FI =

⋃
i∈I Fi, Ī = Ik,n \ I, DĪ

k−1,n = Dk,n[
⋃

i∈Ī V (Di
k−1,n)], and FĪ =

⋃
i∈Ī Fi.

These notations will be used throughout the paper.
The following studied results in DCells are helpful in our paper and thus

showed as follows.

Lemma 1 [4]. The connectivity of Dk,n is κ(Dk,n) = n + k − 1.

Lemma 2 [4]. The order of Dk,n satisfies tk,n ≥ (n +
1
2
)2

k − 1
2
.

Lemma 3 [21]. There exist tk−1,n node disjoint paths joining Di
k−1,n and

Dj
k−1,n with i �= j.

Lemma 4 [21]. Let F ⊂ V (Dk,n) denote a faulty node set with |F | ≤ (h + 1)
(k − 1) + n. For any three integers n ≥ 2, k ≥ 2, 0 ≤ h ≤ n − 1, DĪ

k−1,n − FĪ is
connected and |I| ≤ h + 1.

Lemma 5 [21]. For any n ≥ 2, k ≥ 2, and any H0 ⊆ V (Dα
0,n) and H1 ⊆

V (Dβ
0,n) such that α, β ∈ V 1

k,n and α �= β, we have |NDk,n
(H0) ∩ H1| ≤ 1.

3 The Extra-h Connectivity of DCells

In fact, the extra-h connectivity for h = 0 on Dk,n was gotten by Guo et al.
[4] for any nonnegative integers n ≥ 2 and k ≥ 0. Nevertheless, the extra-h



Reliability Evaluation of DCell Networks 217

connectivity for h ≥ 1 of Dk,n has not been obtained yet. In this section, for any
integer n ≥ 2, the extra-h connectivity when 0 ≤ h ≤ n − 1 and k ≥ 2, when
n ≤ h ≤ 2n − 1 and k ≥ n + 1 of Dk,n will be studied, respectively.

Lemma 6. Given an nonnegative integer n ≥ 2, let fn(m) = mn − m(m−1)
2 be

a function of m, fn(m) = mn − m(m−1)
2 is strictly monotonically increasing on

m if 1 ≤ m ≤ n.

Proof. If 1 ≤ m ≤ n, we can verify that

df

dm
= n − 1

2
(2m − 1) = n − m +

1
2

> 0.

Thus, for any nonnegative integers m′ and m such that 1 ≤ m′ < m ≤ n, we
have fn(m′) < fn(m).

Lemma 7. For any three integers k ≥ 2, n ≥ 2, and 0 ≤ h ≤ n − 1, let
H ⊆ V (Dk,n) with |H| = h+1. Then, we have |NDk,n

(H)| ≥ (k − 1)(h+1)+n.

Proof. Let S = {σ(u, 1) : u ∈ H} = {s1, s2, . . . , sm} with 1 ≤ m ≤ h + 1. For
any 1 ≤ i ≤ m, let Hi = V (Dsi

0,n) ∩ H and hi = |Hi|. Obviously,
∑m

i=1 hi =
|H| = h+1. Definition 1 and Lemma 5 implies that any node in H has exactly k

neighbor(s) in Dk,n − V (Dsi
0,n), H has at most m(m−1)

2 common neighbor(s) in
Dk,n−V (Dsi

0,n), and Hi has exactly n−hi neighbor(s) in Dsi
0,n for any 1 ≤ i ≤ m.

Thus, we have

|NDk,n
(H)| ≥ k(h + 1) − m(m − 1)

2
+

∑

1≤i≤m

(n − hi)

= (k − 1)(h + 1) + mn − m(m − 1)
2

.

For any m with 1 ≤ m ≤ h + 1 ≤ n, mn − m(m−1)
2 ≥ n by Lemma 6. Then, we

have

|NDk,n
(H)| ≥ (k − 1)(h + 1) + mn − m(m − 1)

2
≥ (k − 1)(h + 1) + n.

Lemma 8. For any three integers k ≥ 2, n ≥ 2, and 0 ≤ h ≤ n − 1, and any
node set F ⊂ V (Dk,n) with |F | ≤ (k − 1)(h + 1) + n − 1, Dk,n − F contains a
large connected component including not less than tk,n − |F | − h nodes.

Proof. In this lemma, we will prove that by the induction on the integer h. If
h = 0, Dk,n − F is connected since |F | ≤ n + k − 2 < n + k − 1 = κ(Dk,n),
the result holds. Suppose that the result is correct when h = τ − 1 with
n − 1 ≥ τ ≥ 1. Then, we will show that it is correct for h = τ (1 ≤ τ ≤ n − 1).
Assume that H1,H2, . . . , Hm,Hm+1 are total the components of Dk,n − F , and
|V (Hm+1)| =max{|V (H1)|, |V (H2)|, . . . , |V (Hm+1)|}. By Lemma 4, DĪ

k−1,n −FĪ

is connected. So V (DĪ
k−1,n − FĪ) ⊆ V (Hm+1). Let r = |I| ≤ τ + 1 and
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I = {α1, α2, . . . , αr}. The lemma holds for r = 0 since Dk,n − F = DĪ
k−1,n − FĪ

is connected by Lemma 4. To complete the proof, if 1 ≤ r ≤ τ + 1, we consider
the following three cases.

Case 1. Dαi

k−1,n − Fαi
is connected for any 1 ≤ i ≤ r.

Fig. 2. An illustration for Case 1 in Lemma 8.

By Definition 1, each node in Di
k−1,n for i ∈ I has accurately one neighbor

in Dk,n − V (Di
k−1,n). For any three integers k ≥ 2, n ≥ 2, 1 ≤ τ ≤ n − 1, and

αi ∈ I, we have

|NDk,n−V (D
αi
k−1,n

)(V (Dαi
k−1,n) \ Fαi)| = |V (Dαi

k−1,n)| − |Fαi | = tk−1,n − |Fαi |
> (k − 1)(τ + 1) + n − 1 − |Fαi | ≥ |F | − |Fαi |
= |FĪ | + (|FI | − |Fαi |).

Thus, we can verify that there exists at least one node of Dαi

k−1,n − Fαi
to

be adjacent to a node in DĪ
k−1,n − FĪ for any αi ∈ I (see Fig. 2). As a result,

Dk,n − F is connected. Hence, Dk,n − F has a connected component including
at least tk,n − |F | − τ nodes, when 1 ≤ τ ≤ n − 1.

Case 2. Exactly one subgraph of Dα1
k−1,n−Fα1 ,D

α2
k−1,n−Fα2 , . . . , D

αr

k−1,n−Fαr

is disconnected.
Let Dαλ

k−1,n be disconnected such that 1 ≤ λ ≤ r. According to the Case 1,
we can verify that Dk,n − V (Dαλ

k−1,n) − (F \ Fαλ
) is connected. So, V (Dk,n −

V (Dαλ

k−1,n) − (F \ Fαλ
)) ⊆ V (Hm+1). Then, we have

⋃m
i=1 V (Hi) ⊆ V (Dαλ

k−1,n −
Fαλ

). What’s more, we will show that the order in
⋃m

i=1 V (Hi) will not larger
than τ −1. Suppose that the sum orders in

⋃m
i=1 V (Hi) is at least τ . By Lemma 7,

we obtain |NDk,n
(
⋃m

i=1 V (Hi))| ≥ (k − 1)(τ + 1) + n > |F |, a contraction. Thus,
|⋃m

i=1 V (Hi)| ≤ τ −1. Hence, Dk,n −F has a connected component including at
least tk,n − |F | − τ nodes, where 1 ≤ τ ≤ n − 1.

Case 3. Exactly r′ subgraphs of Dα1
k−1,n−Fα1 ,D

α2
k−1,n−Fα2 , . . . , D

αr

k−1,n−Fαr

are disconnected, where 2 ≤ r′ ≤ r.
Let {q1, q2, . . . , qr′} ⊆ {1, 2, . . . , r} such that D

αqi

k−1,n is disconnected for any
1 ≤ i ≤ r′. According to the proof of Case 2, we can verify that Dk,n −
⋃r′

i=1 V (Dαqi

k−1,n)− (F \⋃r′

i=1 Fαqi
) is connected. So, V (Dk,n −⋃r′

i=1 V (Dαqi

k−1,n)−
(F \ ⋃r′

i=1 Fαqi
)) ⊆ V (Hm+1). For any integers 1 ≤ τ ≤ n − 1 and 1 ≤ i ≤ r′, we

have
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|Fqi
| ≤ |F | −

∑

1≤j≤r′,j �=i

|Fqj
| ≤ (k − 1)(τ + 1) + n − 1 − (r′ − 1)(n + k − 2)

≤ (k − 1)(τ + 1) + n − 1 − (k − 1 + τ) (3.1)
= (k − 2)τ + n − 1

and

|F \
r′
⋃

i=1

Fαqi
| = |F | −

r′
∑

j=1

|Fqj
|

≤ (k − 1)(τ + 1) + n − 1 − r′(n + k − 2) (3.2)
≤ (k − 1)(τ − 1) − (n − 1).

By the induction hypothesis, D
αqi

k−1,n − Fαqi
contains a large component Aαqi

including not less than tk−1,n − |Fαqi
| − (τ − 1) nodes if 1 ≤ i ≤ r′. For any four

integers n ≥ 2, k ≥ 2, 1 ≤ τ ≤ n − 1, and 1 ≤ i ≤ r′, we can verify

|V (Aαqi
)| ≥ tk−1,n − |Fαqi

| − (τ − 1)

≥ (n +
1
2
)2

k−1 − 1
2

− ((k − 2)τ + n − 1) − (τ − 1)

≥ 2(k − 1)n − (k − 1)τ − n ≥ (k − 1)n
> (k − 1)(τ − 1) − (n − 1)

≥ |F \
r′
⋃

i=1

Fαqi
|

by (3.1) and (3.2). Therefore, for any nonnegative integer 1 ≤ i ≤ r′, Aαqi
is

connected to Dk,n − ⋃r′

i=1 V (Dαqi

k−1,n) − (F \ ⋃r′

i=1 Fαλ
) in Dk,n − F . That is,

we have V (Aαqi
) ⊂ V (Hm+1). Let Vαqi

=
⋃m

i=1(V (Hi) ∩ V (Dαqi

k−1,n)) for any

nonnegative integer 1 ≤ i ≤ r′. Then, we will prove the order of
⋃r′

i=1 Vαqi
will

not larger than τ − 1. Furthermore, assume that the total order of
⋃r′

i=1 Vαqi
is

at least τ . By Lemma 7, we have |NDk,n
(
⋃r′

i=1 Vαqi
)| ≥ (k − 1)(τ + 1) + n > |F |,

a contraction. Thus, |⋃r′

i=1 Vαqi
| ≤ τ − 1. Hence, Dk,n − F has a connected

component including at least tk,n − |F | − τ nodes, where 1 ≤ τ ≤ n − 1.
To sum up, the lemma holds for h = τ . So far, the discussion of the lemma

is complete.

Theorem 1. Given any three integers n ≥ 2, 0 ≤ h ≤ n − 1, and k ≥ 2, the
extra-h connectivity of Dk,n is κh(Dk,n) = (k − 1)(h + 1) + n.

Proof. Let H be a induced subgraph of the number of nodes is h + 1 in Dα
0,n

with α ∈ V 1
k,n. Let V ′ = V (H) and F = NDk,n

(V ′), obviously, Dk,n − F is
disconnected. Definition 1 implies that any node in V ′ has exactly k neighbors
in Dk,n − V (Dα

0,n) and V ′ has accurately n − (h + 1) neighbors in Dα
0,n − V ′.
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Thus, we have |F | = (h+1)k +n− (h+1) = (h+1)(k −1)+n. Furthermore, we
will prove that the node set F is an extra-h node cut on Dk,n. Let u ∈ V ′ and
β = (u)k. By Lemma 4, we can verify that Dk,n − (V (Dβ

k−1,n)∪F ) is connected.
By Definition 1, each node in Dβ

k−1,n −ADβ
k−1,n

(V ′) has accurately one neighbor

in Dk,n − (V (Dβ
k−1,n) ∪ F ). Therefore, Dk,n − F contains two components, one

of the components is Dk,n − ADk,n
(V ′) and the other of the components is H.

Accordingly, for any three integers n ≥ 2, k ≥ 2, and 0 ≤ h ≤ n − 1, we have

|V (Dk,n − ADk,n
(V ′))| ≥ tk,n − (|V ′| + |F |) ≥ (n +

1
2
)2

k − 1
2

− ((h + 1)k + n)

≥ (k + 2)n − ((h + 1)k + n) ≥ n

≥ h + 1.

Then, F is an extra-h node cut of Dk,n, and thus κh(Dk,n) ≤ (k − 1)(h + 1) + n
for three integers k ≥ 2, n ≥ 2, and 0 ≤ h ≤ n − 1.

Nevertheless, given three integers n ≥ 2, k ≥ 2, and 0 ≤ h ≤ n − 1, if
the number of nodes of each component of Dk,n − F is not more than h + 1
with F ⊆ V (Dk,n), then |F | ≥ (k − 1)(h + 1) + n by Lemma 8. So, κh(Dk,n) ≥
(k − 1)(h + 1) + n.

Hence, κh(Dk,n) = (k −1)(h+1)+n for the three integers n ≥ 2, k ≥ 2, and
0 ≤ h ≤ n − 1.

Lemma 9. For any three nonnegative integers n ≥ 2, n ≤ h ≤ 2n − 1, and
k ≥ n + 1, and any node sub-set F ⊂ V (Dk,n), if |F | ≤ (k − 1)(h + 1) + 2n − 2,
then, DĪ

k−1,n − FĪ is connected and |I| ≤ h + 1.

Proof. In the beginning, we prove that |I| ≤ h + 1. Assume that |I| ≥ h + 2,
according to definition of I, for any three nonnegative n ≥ 2, n ≤ h ≤ 2n − 1,
and k ≥ n + 1, we have

|F | ≥ (h + 2)(n + k − 2) ≥ (k − 1)(h + 1) + 3(n − 1) + (n + k − 2)
> (k − 1)(h + 1) + 2n − 2.

In the following, we will show that DĪ
k−1,n − FĪ is connected. For any i ∈ Ī,

Di
k−1,n − Fi is connected since κ(Di

k−1,n) = n + k − 2 and |Fi| ≤ n + k − 3. For
any two Di

k−1,n and Dj
k−1,n with distinct i, j ∈ Ī, k ≥ 2, and n ≥ 2, according to

Fig. 3. An illustration of tk−1,n disjoint paths P1, P2, . . .. and Ptk−1,n joining Di
k−1,n

and Dj
k−1,n in Lemma 9.
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Lemma 3, there exist tk−1,n disjoint paths P1, P2, . . ., and Ptk−1,n
joining Di

k−1,n

and Dj
k−1,n (see Fig. 3). Then, for any n ≥ 2, n ≤ h ≤ 2n − 1, and k ≥ n + 1,

we have

tk−1,n ≥ (n +
1
2
)2

k−1 − 1
2

> 2kn ≥ (k − 1)2n + 2n

> (k − 1)(h + 1) + 2n − 2.

Thus, we can verify that there exists a path without any failure joining Di
k−1,n

and Dj
k−1,n in DĪ

k−1,n − FĪ for any two distinct i, j ∈ Ī. Then, DĪ
k−1,n − FĪ is

connected.

Lemma 10. Given an integer n ≥ 2, let gn(m) = 2mn − m(m+1)
2 − n2 + n

be a function of m, gn(m) = 2mn − m(m+1)
2 − n2 + n is strictly monotonically

increasing on m if n + 1 ≤ m ≤ 2n − 1.

Proof. When n+1 ≤ m ≤ 2n−1, we have dg
dm = 2n− 1

2 (2m+1) = 2n−m− 1
2 > 0.

So, for any two positive integers m′ and m such that n + 1 ≤ m′ < m ≤ 2n − 1,
we have gn(m′) < gn(m).

Lemma 11. For any three three integers n ≥ 2, k ≥ n+1, and n ≤ h ≤ 2n−1,
let H ⊆ V (Dk,n) and |H| = h+1. Then, we have |NDk,n

(H)| ≥ (k − 1)(h+1)+
2n − 1.

Proof. Let S = {σ(u, 1) : u ∈ H} = {s1, s2, . . . , sm} with 2 ≤ m ≤ h + 1. For
any 1 ≤ i ≤ m, let Hi = V (Dsi

0,n) ∩ H and hi = |Hi|. Obviously,
∑m

i=1 hi =
|H| = h + 1. When 2 ≤ m ≤ n, similar to the result of Lemma 7, we can verify

|NDk,n
(H)| ≥ (k − 1)(h + 1) + mn − m(m − 1)

2
.

When n + 1 ≤ m ≤ 2n, let T1 =
⋃n

i=1 Hi and T2 =
⋃m

i=n+1 Hi. Definition 1
and Lemma 5 implies that any node in H has exactly k neighbors in Dk,n −⋃m

i=1 V (Dsi
0,n), Hi has exactly n − hi neighbor(s) in Dsi

0,n for any 1 ≤ i ≤ m, T1

has not more than n(n−1)
2 common neighbor(s) in

⋃n
i=1 V (Dsi

0,n), and T2 has not
more than (m−n)(m−n−1)

2 + (m − n) common neighbors in
⋃m

i=1 V (Dsi
0,n). Thus,

we have

|NDk,n(H)| ≥ k(h + 1) +
m∑

i=1

(n − hi) − n(n − 1)

2
− (

(m − n)(m − n − 1)

2
+ m − n)

= (k − 1)(h + 1) + 2mn − m(m + 1)

2
− n2 + n.

For any m with 2 ≤ m ≤ n, by Lemma 6, we have

mn − m(m − 1)
2

≥ 2n − 2. (3.3)
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For any m with n + 1 ≤ m ≤ 2n − 1, by Lemma 10, we have

2mn − m(m + 1)
2

− n2 + n ≥ n(n + 3)
2

− 1. (3.4)

For m = 2n, we have

2mn − m(m + 1)
2

− n2 + n = n2. (3.5)

Thus, by (3.3), (3.4), and (3.5), we have

|NDk,n
(H)| ≥ (k − 1)(h + 1) + min{2n − 2,

n(n + 3)
2

− 1, n2}
= (h + 1)(k − 1) + 2n − 2.

So far, |NDk,n
(H)| ≥ (k − 1)(h + 1) + 2n − 1 for n ≥ 2, n ≤ h ≤ 2n − 1, and

k ≥ n + 1.

Fig. 4. An illustration of Lemma 12.

Lemma 12. For any three integers n ≥ 2, n ≤ h ≤ 2n − 1, and k ≥ n + 1, and
any node sub-set F ⊂ V (Dk,n) with |F | ≤ (k − 1)(h + 1) + 2n − 2, Dk,n − F
contains a large component including not less than tk,n − |F | − h nodes.

Proof. Assume that H1,H2, . . . , Hm,Hm+1 are all the components of Dk,n − F ,
and the number of nodes of Hm+1 is the largest. By Lemma 9, DĪ

k−1,n − FĪ

is connected. So, V (DĪ
k−1,n − FĪ) ⊆ V (Hm+1). Let r = |I| ≤ h + 1 and I =

{α1, α2, . . . , αr}. Then, let Vαi
=

⋃m
i=1 V (Hi) ∩ V (Dαi

k−1,n) for any 1 ≤ i ≤ r.
Furthermore, we will show the order in

⋃r
i=1 Vαi

does not exceed h. We assume
that the sum of orders in

⋃r
i=1 Vαi

is at least h + 1. By Lemma 11, we have
|NDk,n

(
⋃r

i=1 Vαi
)| ≥ (k − 1)(h + 1) + 2n − 2 > |F |, a contraction. Thus, we have⋃r

i=1 |Vαi
| ≤ h (see Fig. 4). Then, for any 1 ≤ i ≤ r, let Aαi

= V (Dαi

k−1,n −Fαi
−

Vαi
), we have

|Aαi
| ≥ tk−1,n − |F | − h ≥ (k − 1)(h + 1) + 2n − 2 > |F |.

Therefore, Aαi
is connected to DĪ

k−1,n−FĪ in Dk,n−F and thus Aαi
⊆ V (Hm+1)

for any 1 ≤ i ≤ r . Hence, Dk,n − F has a connected component including at
least tk,n − |F | − h nodes, if k ≥ n + 1 and n ≤ h ≤ 2n − 1.
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Theorem 2. For any three integers n ≥ 2, k ≥ n + 1, and n ≤ h ≤ 2n − 1, the
extra-h connectivity of Dk,n is κh(Dk,n) = (k − 1)(h + 1) + 2n − 2.

Proof. We use H to denote a induced subgraph of order h + 1 in Dk,n

with V (H) = {α00, α01, . . . , α0(n − 1), α10, α11, . . . , α1(h − n)}, E(H) =
E(Dk,n[V (H)]), and α ∈ V 2

k,n. Letting V ′ = V (H) and F = NDk,n
(V ′), obvi-

ously, Dk,n − F is disconnected. Then, letting T = V (Dα0
0,n) ∪ V (Dα1

0,n), Defini-
tion 1 implies that α00 has exactly k − 1 neighbor(s) in Dk,n − T , any node in
H − {α00} has exactly k neighbor(s) in Dk,n − T , and V ′ has exactly 2n − h
neighbor(s) in Dk,n[T ] − V ′. Thus, we have

|F | = hk + (k − 1) + 2n − h = (k − 1)(h + 1) + 2n − 2.

Furthermore, we will prove that F is an extra-h node cut of Dk,n. Let u ∈ V ′

and β = (u)k. By Lemma 9, Dk,n − (V (Dβ
k−1,n) ∪ F ) is connected. By Def-

inition 1, every node of Dβ
k−1,n − ADβ

k−1,n
(V ′) has accurate one neighbor in

Dk,n − (V (Dβ
k−1,n)∪F ). Therefore, Dk,n −F contains two distinct components,

one is Dk,n − ADk,n
(V ′) and the other is H. Accordingly, for any two integers

n ≥ 2 and k ≥ 2, we have

|V (Dk,n − ADk,n
(V ′))| ≥ tk,n − |V ′| ≥ (n +

1
2
)2

k − 1
2

− 2n

≥ 2kn − 2n ≥ 2n2 > 2n

≥ h + 1.

Furthermore, F is an extra-h node cut of Dk,n, and thus κh(Dk,n) ≤ (h + 1)
(k − 1) + 2n − 2 for n ≥ 2, n ≤ h ≤ 2n − 1, and k ≥ n + 1.

However, given three integers n ≥ 2, k ≥ n + 1, and n ≤ h ≤ 2n − 1,
if the number of nodes of each connected component of Dk,n − F is at least
h + 1 with F ⊆ V (Dk,n), then |F | ≥ (k − 1)(h + 1) + 2n − 2 by Lemma 12. So,
κh(Dk,n) ≥ (k − 1)(h + 1) + 2n − 2.

Hence, κh(Dk,n) = (k − 1)(h + 1) + 2n − 2 when n ≥ 2, k ≥ n + 1, and
n ≤ h ≤ 2n − 1.

The reliability a faulty DCN has close relations with its structure. We will
determine extra-h connectivity of DCell in the following theorem, use the above
results on the structure of a faulty DCell network. The following theorem about
the κh(Dk,n) follows Theorems 1 and 2.

Theorem 3. For any positive integer n ≥ 2,

κh(Dk,n) =

{
(k − 1)(h + 1) + n if 0 ≤ h ≤ n − 1 and k ≥ 2,

(k − 1)(h + 1) + 2n − 2 if n ≤ h ≤ 2n − 1 and k ≥ n + 1.

By Theorem 3, we will proposed the following theorem:

Theorem 4. For any n ≥ 2, k ≥ 2, and 0 ≤ h ≤ n − 1 (resp. n ≥ 2, k ≥ n + 1,
and n ≤ h ≤ 2n − 1), let F ⊂ V (Dk,n) with |F | < κh(Dk,n). Then, Dk,n − F
contains a large connected component and the rest of small connected components
have not more than h nodes in total.
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4 Conclusions

Our primary aim of this paper is to explore the boundary problem of node sub-
sets in DCells. In this paper, we determine that the extra-h connectivity of Dk,n

when n ≥ 2, κh(Dk,n), as follows: (1) κh(Dk,n) = (k − 1)(h + 1) + n if k ≥ 2
and 0 ≤ h ≤ n − 1; (2) κh(Dk,n) = (k − 1)(h + 1) + 2n − 2 if k ≥ n + 1
and n ≤ h ≤ 2n − 1. What’s more, for any node sub-set F ⊆ V (Dk,n) with
|F | ≤ κh(Dk,n) − 1, we show that there has a large component in Dk,n − F ,
and the rest of small components contain not less than h nodes in total with
0 ≤ h ≤ n − 1 and k ≥ 2 (resp. n ≤ h ≤ 2n − 1 and k ≥ n + 1). This approach
studied in the paper may also be used to research the reliability of other DCNs
such as BCube and Ficonn.
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