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Abstract. In order to solve the problem of high sampling rate in the wideband
spectrum sensing of cognitive radio, this paper studies the method of cyclic
spectrum detection based on the modulation wideband converter (MWC).
A novel fast cyclic spectrum detection algorithm of MWC based on Lorentzian
Norm is proposed to deal with the influence of some non-ideal factors on the
performance of the existing MWC system reconstruction algorithm in physical
implementation. Firstly, the objective function for sparse optimization is build
based on smoothed L0-norm constrained Lorentzian norm regularization. Then a
parallel reconstruction method is implemented in a unified parametric frame-
work by combining the fixed-step formula and the conjugate gradient algorithm
with sufficient decent property. Simulation results demonstrate that the proposed
algorithm can not only improve the recovery probability of sparse signal, but
also has a higher detection probability in low SNR environment compared with
traditional reconstruction algorithms.
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1 Introduction

Ensuring the normal communication of the primary user (PU) is a prerequisite for
cognitive radio, therefore, spectrum sensing is very important. Fast and accurately
sensing of the whole frequency domain information is the target of spectrum sensing,
and it is still a huge challenge for spectrum sensing. Different with the spectrum
sensing problem of traditional narrowband systems, cognitive radio needs to complete
the dynamic access to broadband. The cyclic spectrum feature detection has stronger
ability to resist the uncertainty of the noise power, and can better distinguish the noise
and signal than energy detector, so it has a good application prospect [1]. However,
traditional detection methods are based on the Nyquist theorem for sampling, such a
high-speed ADC design and mass information processing in the broadband spectrum
sensing is difficult to achieve [2].
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Compressed sensing (CS) is a new kind of compressed sampling technology [3].
Tian and Giannakis introduced CS technology into the broadband spectrum sensing of
cognitive radio [4]. Professor Eladar’s research group proposed a modulated wideband
converter (MWC) with parallel multi-branch structure [5]. Modulated wideband con-
verter can theoretically use existing devices to sample the continuous frequency sparse
multiband signal with sub Nyquist sampling and accurately reconstruct the original
signal.

In literature [6], it is pointed out that the signal reconstruction of MWC system can
be transformed into multiple measurement vectors, which is a generalized form of
single measurement vector (SMV) model in CS theory. Eldar and Rauhut demonstrated
that the MMV model can significantly improve the probability of successful recon-
struction of unknown sparse signals relative to the SMV model algorithm in [7] and [8].
The number of MWC system channels determines the hardware complexity of the
device. The literature [9] proposed a reconstruction algorithm based on random pro-
jection idea, which reduces the minimum number of channels required for high
probability reconstruction. However, there are still large gaps in the performance of the
MWC reconstruction algorithm between theory and practice, and it is assumed that
different measurement columns meet the joint sparse characteristics. In addition, the
reconstruction model does not consider the effect of some non-ideal factors on the
performance of the system.

In order to solve the above problems, a fast cyclic spectrum detection algorithm for
MWC based on Lorentzian norm (MWC-FCSD) is proposed. For the beginning, the
objective function for sparse optimization was built based on matrix smoothed
L0-norm. The Lorentzian norm is used to fit the error term of the noise, which
effectively suppresses the singular values in the measurement vector and improves the
reconstruction precision and robustness. Then, the conjugate gradient method with
fixed step is used to solve the parallel optimization problem under the unified parameter
framework, which reduces the matrix storage and operation, and improves the con-
vergence speed and efficiency of the algorithm. Finally, the algorithm is applied to the
cyclic spectrum detection. The simulation results show the effectiveness of the pro-
posed algorithm.

2 Cyclic Spectrum Estimation Based on Compressive Sensing

2.1 MWC Compressed Sampling

The block diagram of MWC system is shown in Fig. 1. The system uses a parallel
multi-channel structure, and each channel consists of a pseudo-random sequence
generator, a mixer, a low-pass filter and a low-speed sampler. Different channels of the
MWC system are mixed with different pseudo-random ± 1 waveform functions with
the same period Tp, so that each frequency band is weighted with different Fourier
coefficients to ensure that all the frequency band information can be obtained by low
speed sampling.
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According to Fourier analysis, we can get the relationship between Yiðej2pfTsÞ and
Xðf � lfpÞ:

Yiðej2pfTsÞ¼
XL0

l¼�L0

cilXðf � lfpÞ ; ð1Þ

where f 2 Fs ¼ ½�fs=2; fs=2�. cil is the coefficients of Fourier expanding series of piðtÞ.
To facilitate the analysis of subsequent signal reconstruction process, the combination
of all m samplers, we can obtain the following matrix form:

Yðf Þ ¼ Uzðf Þ; f 2 Fs ; ð2Þ

where Ui;j ¼ ci;j�L0�1 2 Rm�L, Yiðf Þ ¼ Yiðej2pfTsÞ, zlðf Þ ¼ Xðf � lfpÞ; f 2 Fs.

2.2 Cyclic Spectrum of Compressed Sampling Signal

To calculate the cyclic spectrum of xðtÞ, we must derive the linear relationship between
the cyclic spectrum and the reconstructed signal. The mean of the sequence xðnÞ is zero
and the cyclic spectrum is stable, so the autocorrelation function can be defined as

rxðn; vÞ ¼ EfxðnTsÞx�ðnTs þ vTsÞg ¼ Efx½n�x�½nþ v�g ; ð3Þ

where rxðn; vÞ ¼ rxðnþ kP; vÞ, the integer P means the cyclic period
The Fourier coefficient of rxðn; vÞ is called Cyclic Autocorrelation Function (CAF).

For the sampling length N is limited, so the estimation of CAF can be represented as

~rðcÞx ða; vÞ ¼ f1
N

XN�1�v

n¼0

rxðn; vÞe�j2pN ange�jpNav ; ð4Þ

Fig. 1. MWC sampling system block diagram.
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where a 2 ½0;N � 1�. Based on continuous signal processing, the CAF of the discrete
cyclic stationary signal increases the correction factor e�jpav=N . Although this expres-
sion is biased, its estimated variance is less than other unbiased estimates [10].

The cyclic spectrum can be obtained by the Fourier transform of CAF which is
represented as

sðcÞx ða; bÞ ¼
XN�1

v¼0

~rðcÞx ða; vÞe�j2pN bv ; ð5Þ

where b 2 ð0;N � 1� is the digital form of spectral frequency f ¼ ðb=NÞfs.

3 Problems in MWC Signal Reconstruction

3.1 Arbitary Sparse Structure Model

MWC compressed sampling is equivalent to the projection process as shown in Fig. 2.
The spectral shift step fp determines the final position of each frequency band of Xðf Þ in
zðf Þ. So, the original sparse multi-band signal can be reconstructed by tracking the
sparsest solution of MMV problem and performing spectral shift.

MMV model can be represented below:

Y ¼ UZ ; ð6Þ

where Z ¼ ½zð1Þ; � � � ; zðLÞ�; zðlÞ 2 RN�1 is consist of L numbers of sparse column vectors,
and it is assumed that these vectors have K numbers of common nonzero rows, which
means joint K sparse.Y ¼ ½yð1Þ; � � � ; yðLÞ�; yðlÞ 2 RM�1 is the sampled value matrix. L is

Fig. 2. Illustration for the spectrum of MWC system.
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the total column number of the measured vectors. MMV reconstruction problem is
essentially to obtain the sparsest solution by solving the optimization problem with
sparse constraints.

argmin
XL

l¼1

jjzðlÞjjl0 st:yðlÞ ¼ UzðlÞ l ¼ 1; � � � ; L ; ð7Þ

where zðlÞ represents the l-th column vector of matrix Z and yðlÞ represents the l-th
column vector of matrix Y. jj � jjl0 represents the l0 norm. Solving MMV model can be
regarded as solving a series of SMV problems with sparseness constraints, which
belong to the typical combinatorial optimization problems.

However, in MWC compressed sampling system, the sparseness of different
measured columns are arbitrary and the locations of nonzero elements were not con-
sistent, and the joint sparseness assumption of traditional MMV model cannot accu-
rately describe the sparseness of such signals. In this paper, it is assumed that MMV
model has arbitrary sparse structure (MMV of Arbitrary Sparse Structure, ASS-MMV),
which means the sparseness and support sets of different column vectors matrix do not
require the same, conforming the frequency sparseness features of vector zðf Þ in MWC
system.

3.2 Effect of Analog Low Pass Filter

In MWC system, in order to retain the low frequency f 2 ½�fs=2; fs=2� after mixing to
achieve low rate sampling, it is required analog low pass filters to complete the
anti-aliasing filtering. The relationship between the Fourier transformation of the output
sequence yiðnÞ and the original signal xðtÞ in Eq. (5) is established in the case of ideal
filtering. However, the actual analog low pass filters have some non-ideal condition,
such as the transition band and the passband fluctuation, as showed in Fig. 3.

Equation (7) represents the MMV model of compressed sensing without noise.
However, during the compressed sampling process in MWC system, the measured
value matrix can be influenced by noise and interface, because of the aliasing frequency
component in filter transition band and the distortion in passband. So the MMV model
with noise can be expressed as:

Fig. 3. Influence of transition band of filter on baseband.
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Y ¼ UZþW ; ð8Þ

where W ¼ ½wð1Þ; � � � ;wðLÞ�;wðlÞ 2 RM�1, W represents additive noise.
The residual frequency components, located in transition band ½fs=2; fs=2þDf � in

Fig. 3, were superimposed on the original components in the form of discrete fre-
quency after A/D sampling. So a number of singular points were added to the com-
pressed sample value matrix, and each element in the sample value matrix was directly
related to the original sparse signal. In the framework of compressed sensing, noise W
was divided into two categories: Gaussian white noise and non-Gaussian impulse
noise. In MWC system, the aliasing distortion caused by analog low pass filter tran-
sition band sampling belongs to the latter.

4 Cyclic Spectrum Detection Algorithm for MWC

4.1 Sparse Optimization Objective Function

For the MMV solution problem in the noise model, the Eq. (8) can be modified as
follows:

argmin
XL

l¼1

jjzðlÞjjl0 þ kloss(yðlÞ �UzðlÞÞ ; ð9Þ

where loss(yðlÞ �UzðlÞÞ denoting error term, and k� 0 is regularization parameters,
which controls the balance between allowable error and sparseness. When the W is
Gaussian noise, the norm can be used to fit the error term. In this case, (5) has the
following expression:

argmin
XL

l¼1

jjzðlÞjjl0 þ kjjyðlÞ �UzðlÞjj22 : ð10Þ

It can be seen from the analysis in [11] that the minimum mean square error of the
signal under the compressed sensing optimal reconstruction is proportional to the
variance of the noise. When the W is the impact noise, as it is characterized by a large
variance, elements with larger value will appear in the error term. Because there are
discrete points, the l2 norm will linear amplify the impact of residual.

The literature [12] pointed out that when the Lorentzian norm is used to fit the error
term, due to the bounded soft-return characteristic of the derivative function, the
penalty for the element with large amplitude in the error term is heavier and its effect is
the same as the l1 norm; The penalty of the element with smaller amplitude in the error
term is lighter, and its function is the same as the l2 norm. So it is possible to robustly
reduce the effect of the outliers on the reconstruction results. The Lorentzian norm is
defined as follows:
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jjujjLL2;c ¼
XM

m¼1

logð1þ c�2u2mÞ ; c[ 0 ; ðð11ÞÞ

where u 2 RM�1 is a column vector, and jj � jjLL2;c denotes the Lorentzian norm of u, c
is the scale parameter of the Lorentzian norm and determines the robustness of the LL2
norm to the error term outliers.

In this paper, the Lorentzian norm is used to replace the norm in (10) to fit the error
term. The solution of MMV model under impact noise can be expressed as follows:

argmin
XL

l¼1

jjzðlÞjjl0 þ kjjyðlÞ �UzðlÞjjLL2;c ; ð12Þ

where jjyðlÞ �UzðlÞjjLL2;c denotes the Lorentzian norm of the i-th column reconstruction
error term of the sampling matrix.

4.2 ASS-MMV Fast Reconstruction Algorithm

The signal reconstruction of MMV model can be summarized as an optimization
problem:

LðXÞ ¼
XL

l¼1

jjzðlÞjjl0 þ kjjyðlÞ �UzðlÞjjLL2;c : ð13Þ

In the formula (13), the norm is pseudo-norm, which is highly discontinuous and
cannot be solved by analytic method. It belongs to the NP-Hard problem. The SL0
algorithm approximates the l0 norm by a class of smooth Gaussian functions, and
solves the minimum problem directly by analytic method. This method not only
improves the reconstruction probability, but also greatly shortens the computing time.
The optimal objective function based on smooth norm and Lorentzian norm is

LðZÞ ¼
XL

l¼1

FrðzðlÞÞ þ kjjyðlÞ �UzðlÞjjLL2;c ; ð14Þ

where FrðzðlÞÞ ¼ N �PN

i¼1
frðzðlÞi Þ, frðzðlÞi Þ denotes Standard Gaussian function

frðsÞ ¼ expð�s2=2r2Þ ; ð15Þ

where r is used to measure the relationship between the accuracy and smoothness of
the l0 norm of the vector s. By the properties of the Gaussian function
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lim
r!0

FrðzðlÞÞ ¼ jjzðlÞjj0 : ð16Þ

The fast reconstruction algorithm of ASS-MMV model uses the characteristics of
SL0 algorithm which converge to the vicinity of the optimal value at each r value, and
set the initial least squares solution of sparse vector: Z0 ¼ UHðUUHÞ�1Y. The algo-
rithm reconstructs the multi-vector in parallel with the numerical optimization algo-
rithm under the unified parameter setting framework, and realizes the parallel
reconstruction of the MMV signal model with arbitrary sparse structure.

The iterative method is used to solve the optimal solution as (16):

zkþ 1 ¼ zk þ akdK ; ð17Þ

where zk is the k-th iteration point, dk is the k-th search direction, ak is the k-th iterative
step. In order to overcome the slow convergence rate of steepest descent method, and
high computational complexity and large storage of newton method used in SL0
algorithm, a conjugate gradient algorithm based on fixed step size is adopted in this
paper [13].

5 Numerical Experiment

We performed simulations to demonstrate the effectiveness of the MWC-FCSD algo-
rithm. Firstly, the influence of the transition band of analog low-pass filter on the
reconstruction performance of MWC-FCSD algorithm, OMPMMV algorithm and
MSL0 algorithm are analyzed. Secondly, the reconstruction time of each algorithm is
compared. Finally the performance of cyclic spectrum detection is verified. For all the
experiments we create sparse multiband signals, which is BPSK modulation signal with
different energy En, carrier frequency fn and bandwidth Bn. The carriers fn for very
signal are chosen uniformly at random in ½�fNYQ=2; fNYQ=2� with fNYQ = 10 GHz. In
order to use MATLAB to simulate the sampling process of the analog signal, the
sampling rate 10fNYQ is used to simulate the analog signal.

The parameters of MWC are configured as follows, fs ¼ fp ¼ 51:28MHz,
M ¼ 195, L ¼ 2L0 þ 1 ¼ 195, En 2 ½1; 3�, sn determined randomly in the effective
observation time.

The following simulations are repeated 500 times for each set of parameters setting.
The ratio of the number of successes to the number of experiments is taken as the
reconstruction success rate which is defined as the recovered support sets is the same as
the actual support sets.

A. Influence on performance of transition band of LP filter
In order to evaluate the influence of analog low-pass filter on signal reconstruction
performance, we adjust the rectangle coefficients of low-pass filter, and compare the
reconstruction success rate of OMPMMV algorithm, MSL0 algorithm andMWC-FCSD
algorithm, as shown in Fig. 4. The multiband signals consist of N ¼ 4 pairs of bands,
and the channel number takes one of the two choices: 30 or 50.
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As can be seen from Fig. 4, the larger the rectangular coefficient of the low-pass
filter, the smaller the success rate of the reconstruction. This is because the wider the
transition band of the low-pass filter, the higher the frequency aliasing of the baseband
signal after sampling, that is, the greater the impact noise. Due to the use of the
Lorentzian norm fitting error term in MWC-FCSD algorithm, the singular value in the
observation vector can be robustly suppressed. It can be seen from Fig. 4 that the
reconstruction success rate can be improved by increasing the number of channels. In
order to achieve high probability reconstruction (more than 90%), the number of
channels and the rectangular coefficient required by MWC-FCSD algorithm,
OMPMMV algorithm, MSL0 algorithm, respectively, are m¼ 30 and r¼ 1:3, m¼ 50
and r¼ 1:26, m¼ 50 and r¼ 1:26. In conclusion, our algorithm can effectively
improve the reconstruction ability of the MWC system, reduce the number of hardware
channels, and the design requirements of the analog low-pass filter transition bandwide.

B. Comparison of reconstruction time under different channels
In this section, we add a set of simulation data of SL0 algorithm based on SMV model
to verify the advantages of MMV model in reconstruction speed. The average operation
times of the four algorithms are given in Table 1, and the number of channels is set to
24, 26, 28, 30, 32, 34. In addition to N¼ 6, the other parameters are consistent with
experiment A.

Fig. 4. Reconstruction success rate comparison under different transition bandwidth.

Table 1. Reconstruction times comparison of several algorithms.

Channel OMPMMV MSL0 MWC-FCSD SMV-SL0

24 0.8361 1.6279 1.8294 19.276
26 0.8527 1.6764 1.8846 19.985
28 0.8704 1.7302 1.9403 20.515
30 0.8918 1.7824 1.9971 21.132
32 0.9174 1.8395 2.0572 21.760
34 0.9352 1.9047 2.1163 22.376
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As shown in Table 1, the reconstruction time increases with the number of chan-
nels. Based on the MMV model, the reconstruction times of MWC-FCSD algorithm,
OMPMMV algorithm, MSL0 algorithm are always much smaller than the of SMV-SL0
algorithm, because the SMV-SL0 algorithm needs to be reconstructed one by one.
OMPMMV algorithm has the fastest reconstruction speed, which is a greedy iterative
algorithm. Compared with the MSL0 algorithm, although the computational com-
plexity of objective function gradient and search step size of MWC-FCSD algorithm is
slightly larger, the reconstruction times are close.

C. Cyclic spectrum detection performance of MWC compression sampling
The detection signal consists of three channels which are occupied at the same time.
The cycle spectrum of detection signal reconstructed by our algorithm while m ¼ 50
and SNR = 0 dB is shown in Fig. 5. The signals PU1, PU2, PU3 have significant
spectral peaks at their cyclic frequencies. The peak and its position information can be
used for signal detection and signal modulation recognition. The cyclic spectrum
estimation based on compressed sensing makes use of the sparsity of the cyclic spectral
domain, which reduces the requirement of sampling rate (fP ¼ mfs).

Figure 6 shows the detection probability curves for various numbers m of channels
and various SNRs. When SNR = 20 dB, m = 36, the detection probability Pd is close
to 1. When the SNR is lower than 10 dB, the detection probability decreases sharply,
which is due to the decline of the cyclic spectrum sparsity under low SNR and lead to
deterioration of the reconstruction performance. Meanwhile, the sampling rate can be
adjusted according to the SNR, and channel number can be reduced when the SNR is
high. The detection probability of the detection probability curve in Fig. 6 is obtained
by 500 Monte-Carlo simulations.

Fig. 5. Cyclic spectrum of the reconstruction signal on m = 50.
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6 Conclusion

In this paper, a fast cyclic spectrum detection algorithm for MWC based on Lorentzian
norm is proposed. Our algorithm solves the problem that the performance of the
existing MWC sub-Nyquist sampling reconstruction algorithm is easy to be influenced
by non-ideal factors. Simulation and experimental results show that the algorithm
proposed in this paper has the advantages of good reconfiguration performance and few
reconstruction channels compared with the existing algorithms. It is not only achieves
efficient reconstruction of MWC compression samples with arbitrary sparse structure,
but also can effectively reduce the influence of non-ideal factors such as filter transition.
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