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Abstract. As bearing vibration signal is of nonlinear and nonstationary char-
acteristics, and the condition-indicating information distributed in the rolling
bearing vibration signal is complicated, a new rolling bearing health status
estimation approach using holder coefficient and gray relation algorithm was
proposed based on bearing vibration signal in the paper. Firstly, the holder
coefficient algorithm was proposed for extracting health status feature vectors
based on the bearing vibration signals, and secondly the gray relation algorithm
was developed for achieving bearing fault pattern recognition intelligently using
the extracted feature vectors. At last, the experimental study has illustrated the
proposed approach can efficiently and effectively recognize different fault types
and in addition different severities with good real-time performance.
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1 Introduction

Rolling element bearings are commonly used in rotational machines, and usually their
failure leads to the machine breakdown, which causes substantial economic losses [1–
3]. Vibration-based bearing fault diagnosis approaches have attracted broad attention in
the near past as vibration signal holds rich bearing health status information. As the
result of the nonlinear factors, such as stiffness, friction and clearance, bearing vibration
signals always bear nonlinear and nonstationary performance [4]. what’s more, bearing
vibration signals involve not only the working information related to the bearing itself,
but also plentiful information related to other rotating parts of the machine, which in
comparison with the former is usually taken as the background noise [5]. Thus the
common time domain or frequency domain signal processing approaches may not
easily obtain an accurate estimation result about the bearing health status [6].

Recently, the procedure of bearing fault diagnosis is gradually taken as a process of
fault pattern recognition with the aid of artificial intelligence (AI) approaches [7], and
its reliability is essentially determined by the effectiveness of the fault feature
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extraction. Nowadays, Some entropy based feature extraction methods (e.g., hierar-
chical entropy [8], fuzzy entropy [9], sample entropy [10] and approximate entropy
[11, 12]), were used for extracting fault feature vectors based on bearing vibration
signals. Here, we exploit a holder coefficient algorithm, for extracting fault feature
vectors based on the vibration signals, so as to improve the performance of traditional
feature extraction approaches in the paper.

When the fault feature extraction is ready, a fault pattern recognition method is
required to implement the fault diagnosis automatically. The most common approaches
are support vector machines [13] and artificial neural networks [14–16]. However, the
training of artificial neural networks requires a lot of faulted samples, which are difficult
to obtain in practice. The support vector machines are based on statistical learning
theory, and have better generalization than artificial neural networks under a smaller
number of samples [17]. However, the accuracy of support vector machines is
essentially determined by the choice of their optimum parameters [18]. Thereafter,
complex multi-class concept [19] or optimization algorithms [14, 18] has been used to
improve the effectiveness of SVMs. In this paper, so as to keep a balance between
generality and accuracy, a gray relation algorithm was used to achieve fault pattern
recognition.

2 Holder Coefficient Algorithm

Holder coefficient can be used to measure the similar degree of two sequences, which
may extract signals’ features. It is evolved from Holder inequality and the definition of
Holder inequality can be described as follows:

For any vector X ¼ x1; x2; . . .; xn½ �T and Y ¼ y1; y2; . . .; yn½ �T , they satisfy:

Xn
i¼1

xi � yij j �
Xn
i¼1

xij jp
 !1=p

�
Xn
i¼1

yij jq
 !1=q

ð1Þ

where 1
p þ 1

q ¼ 1 and p; q[ 1.

Based on the Holder inequality, for two discrete signals f1ðiÞ� 0; i ¼ 1; 2; . . .; nf g
and f2ðiÞ� 0; i ¼ 1; 2; . . .; nf g, if 1

p þ 1
q ¼ 1 and p; q[ 1, then Holder coefficient of

these two discrete signals is obtained as follows:

Hc ¼
P

f1 ið Þf2 ið ÞP
f p1 ið Þ� �1=p� P f q2 ið Þ� �1=q ð2Þ

where 0�Hc � 1.
Holder coefficient characterizes the similar degree of two discrete signals, if and

only if f p1 ðiÞ ¼ kf q2 ðiÞ, i ¼ 1; 2; . . .; n, in which n denotes the length of discrete signal
and k is a real number, Hc will be the biggest value. In this case, the similar degree of
two signals is biggest, which indicates that the two signals belong to the same type of

signals; if and only if
Pn
i¼1

f1ðiÞf2ðiÞ ¼ 0, Hc get the minimum value, and in this case, the
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similarity of two signals is smallest, which indicates the signals are irrelevant, and
belong to different types of signals.

Rectangular sequence s1ðiÞ and triangular sequence s2ðiÞ are selected as reference
sequences, and then the Holder coefficient value of the vibration signals to be identified
with the two reference signal sequences is obtained as follows:

H1 ¼
P

f ðiÞs1ðiÞP
f p ið Þð Þ1=p� P sq1 ið Þ� �1=q ð3Þ

where the rectangular sequence s1ðiÞ is as follows:

s1ðiÞ ¼ s; 1� i�N
0; else

�
ð4Þ

Similarly, H2 is obtained as follows:

H2 ¼
P

f ðiÞs2ðiÞP
f p ið Þð Þ1=p� P sq2 ið Þ� �1=q ð5Þ

where the triangular sequence s2ðiÞ is as follows:

s2ðiÞ ¼ 2is=N; 1� i�N=2
2s� 2is=N; N=2� i�N

�
ð6Þ

3 Gray Relation Algorithm

As the basis of gray system theory, the gray relation algorithm is to calculate the gray
relation coefficient and relation degree between each comparative feature vector and
reference feature vectors based on the basic theory of space mathematics [20–23].

Suppose the fault feature vectors (i.e., the two-dimensional feature vector extracted
based on Holder coefficient algorithm) extracted based on vibration signals, to be
identified are as follows:

B1 ¼
b1ð1Þ
b1ð2Þ

" #
; B2 ¼

b2ð1Þ
b2ð2Þ

" #
; . . .; Bi ¼

bið1Þ
bið2Þ

" #
; . . . ð7Þ

where Biði = 1,2,. . .Þ is a certain fault pattern to be recognized (i.e., fault types and in
addition severities).

Suppose the knowledge base between the health status patterns (i.e., fault type as
well as severity) and fault signatures (i.e., the feature vectors) from a part of samples is
as follows:
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C1 ¼
c1 1ð Þ
c1 2ð Þ

" #
; C2 ¼

c2 1ð Þ
c2 2ð Þ

" #
. . .; Cj ¼

cj 1ð Þ
cj 2ð Þ

" #
; . . . ð8Þ

where Cj j ¼ 1; 2; . . .ð Þ is a known health status pattern (i.e., fault type as well as
severity); Cj j ¼ 1; 2; . . .ð Þ is a characteristic parameter.

For q 2 0; 1ð Þ:

n biðkÞ; cj kð Þ� � ¼ min
j

min
k

biðkÞ � cj kð Þ�� ��þ q �max
j

max
k

biðkÞ � cj kð Þ�� ��
biðkÞ � cj kð Þ�� ��þ q �max

j
max
k

biðkÞ � cj kð Þ�� �� ð9Þ

nðBi;CjÞ ¼ 1
2

X2
k¼1

n biðkÞ; cj kð Þ� �
; j ¼ 1; 2; . . . ð10Þ

where q is a distinguishing coefficient; n biðkÞ; cj kð Þ� �
is the gray relation coefficient for

kth feature parameter for Bi and Cj; nðBi;CjÞ is the gray relation degree for Bi and Cj.
Thereafter Bi is categorized to the health status pattern where the maximal
nðBi;CjÞðj ¼1; 2; . . .; Þ is calculated.

4 Proposed Approach

Totally, the proposed approach for rolling bearing health status estimation is as follows:

a. The vibration signals from the object rolling element bearing in a rotating machine
are sampled under different working conditions, including normal operating con-
dition and faulty operating condition with various fault types and severities, for the
establishment of the sample knowledge base.

b. Through a two-dimensional feature extraction algorithm based on Holder coefficient
theory, the health status feature vectors are extracted from the sample knowledge
base.

c. The sample knowledge base for GRA is established based on the fault symptom (i.e.,
the extracted feature vector) and the fault pattern (i.e., the known fault types and
severities).

The feature vectors extracted based on bearing vibration signals to be identified are
input into GRA, and the diagnostic results (i.e., fault types and severity) are output.

5 Experimental Validation

All the rolling element bearing vibration signals for analysis are from Case Western
Reserve University Bearing Data Center [24] in the paper. The related experimental
device consists of a torque meter, a power meter and a three-phase induction motor,
and the load power and speed measured by the sensor, seen in Fig. 1. Over controlling
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the power meter, the desired torque load can be obtained. The motor drive end rotor is
supported by a test bearing, where a single point of failure is set through discharge
machining. The fault diameters (i.e., fault severities) include 28 mils, 21 mils, 14 mils
and 7 mils, and the fault types include outer race fault, the inner race fault and the ball
fault. An accelerometer is installed on the motor drive end housing with a bandwidth
up to 5000 Hz, and the vibration data for the test bearing in different operating con-
ditions is collected by a recorder, where the sampling frequency is 12 kHz.

The bearing vibration data used for analysis was obtained under the load of 0
horsepower and the motor speed of 1797 r/min. The test bearing is a deep groove
rolling bearing of 6205-2RS JEM SKF. Totally 11 types of vibration signals consid-
ering different fault categories and severities are analyzed, seen in Table 1. Each data
sample from vibration signals is made up of 2048 time series points. For those 550 data
samples, 110 data samples are randomly chosen for establishment of knowledge base,
with the rest 440 data samples as testing data samples.

Fig. 1. Experimental setup

Table 1. Description of experimental data set

Bearing
condition

Fault
diameter
(mils)

The number of
base samples

The number of
testing samples

Label of
classification

Normal 0 10 40 1
Inner race
fault

7 10 40 2
14 10 40 3
21 10 40 4
28 10 40 5

Ball fault 7 10 40 6
14 10 40 7
28 10 40 8

Outer race
fault

7 10 40 9
14 10 40 10
21 10 40 11
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The fault feature vectors extracted from bearing normal operating condition and
different fault conditions with 7 mils fault diameter over the two-dimensional feature
extraction algorithm using Holder coefficient were shown in Fig. 2.

And the fault feature vectors extracted from bearing inner race fault condition with
different severities over the two-dimensional feature extraction algorithm using Holder
coefficient were shown in Fig. 3.

From Figs. 2 and 3, it can be seen that the fault feature vectors extracted from the
bearing vibration signals with different fault types and in addition different severities
through the two-dimensional feature extraction algorithm using Holder coefficient
show apparent differences.
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Fig. 2. Holder coefficient features of a random chosen sample from bearing normal operating
condition and different fault conditions with fault diameter 7 mils
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Fig. 3. Holder coefficient features of a random chosen sample from bearing inner race fault
condition with various severities
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The sample knowledge base for GRA is established based on the fault symptom
(i.e., the extracted feature vectors) and the fault pattern (i.e., the known fault types and
severities). The feature vectors extracted from the testing bearing vibration signals to be
identified are input into GRA, and the diagnostic results (i.e., fault types and severities)
are output, shown in Table 2.

The diagnostic results from Table 2 show that the fault pattern recognition success
rate for detecting bearing faulty conditions can reach 100%, and the total fault pattern
recognition success rate can reach almost 93%. The time cost by the proposed diag-
nostic approach for one Test Case is within 1.6 ms by using a laptop computer with a
2.0 GHz dual processor.

6 Conclusion

A novel rolling element bearing vibration signal analysis approach using holder
coefficient and gray relation algorithm was proposed in the paper. The experimental
results have demonstrated that the holder coefficient algorithm is very suitable for
rolling bearing fault feature extraction, which can obtain more distinguishing infor-
mation imaging different health status. And the gray relation algorithm as a pattern
recognition technique is very suitable for implementing the rolling bearing fault pattern
recognition intelligently under a small number of base samples. Moreover, the pro-
posed approach can efficiently and effectively recognize different fault types and in
addition different severities with good real-time performance.

Acknowledgment. The research is supported by the National Natural Science Foundation of
China (No. 61603239) and (No. 61601281).

Table 2. The diagnostic results by GRA

Label of
classification

The number of testing
samples

The number of
misclassified samples

Testing
accuracy (%)

1 40 0 100
2 40 6 85
3 40 0 100
4 40 0 100
5 40 6 85
6 40 6 85
7 40 0 100
8 40 13 67.5
9 40 0 100
10 40 0 100
11 40 0 100
In total 440 31 92.95
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