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Abstract. Signal detection is one of the fundamental problems in three
dimensional multiple-input multiple-output (3D MIMO) wireless communica-
tion systems. This paper addresses a signal detection problem in 3D MIMO
system, in which spatial modulation (SM) transmission scheme is considered
results of advantages of low complexity and high-energy efficiency. SM based
signal transmission, typically results in the block-sparse structure in received
signal. Hence, structured compressed sensing (SCS) based signal detection is
proposed to exploit the inherent block sparsity information in the received signal
for the uplink (UL). To extend the potential applications in different modulation
based systems, this paper analyzes bit error rate (BER) of SCS-based method, in
comparison with conventional methods such as minimum mean square error
(MMSE) and zero padding (ZF). Simulation results are also provided to show
the stable and reliable performance of the proposed SCS-based algorithm under
most modulations.
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1 Introduction

Spatial Modulation (SM) is an attractive technique with low-complexity and high
energy-efficient transmission in three dimension (3D) multiple-input multiple-output
(MIMO) systems. It is capable of exploiting the indices of transmit antennas as an
additional dimension which can invoke for transmitting information, apart from the
traditional amplitude and phase modulation (APM) [1]. Unlike the traditional MIMO
systems, the SM transmitter in 3D-MIMO systems uses massive transmit antennas with
a few number of radio frequency (RF) chains, which significantly improve energy
efficiency of the whole system. Because the power consumption and hardware cost
highly depend on the number of RF chains [2]. Moreover, with only one or several
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non-zero components in transmit signal at each slot, the inherent sparsity of
3D-SM-MIMO signals can be utilized in signal detection to reduce computation
complexity.

For the novel transmit systems, suitable signal detection algorithms are required to
obtain signals. The maximum-likelihood (ML) detector suffers from high complexity
which linearly increases with the number of transmit antennas, the number of receive
antennas, and the size of the symbol constellation [3]. Linear minimum mean square
error (LMMSE)-based signal detector and sphere decoding (SD)-based detector [4]
suffer from significant performance loss in SM-MIMO systems [5–7]. To exploit the
inherent sparsity of SM signals, compressed sensing (CS) theory can be used to
improve the signal detection performance [8, 9]. In [10], CS theory is used for signal
detection in large-scale multiple access channels. Paper [11] proposed a structured
compressed sensing based signal detector for massive spatial modulation MIMO
systems.

To fully extend the applications, this paper analyzes the performance of several
compressed sensing signal detectors with different modulation levels in 3D MIMO
system. Firstly, we compare the detection performance of several available signal
detection algorithms and provide corresponding simulation results. Our simulation
study implied that that SSP algorithm based on structured compressed sensing can
achieve better performance than others. Additionally, SSP algorithm under different
modulation conditions is further analyzed via average bit error rate (BER) standard
against with signal to noise ratio (SNR).

The rest of this paper is organized as follows. Section 2 introduces the 3D MIMO
system model and Sect. 3 presents structured compressed sensing based signal
detection methods. The simulation results and performance analysis of different signal
detectors are provided in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 System Model

In spatial modulation MIMO systems, the transmitter has Nt transmit antennas with
Na\Nt active antennas, and the receiver has Nr receive antennas. The information bit

stream is divided into two parts: the first part with log2
Nt

Na

� �� �
bits is mapped onto

the spatial constellation symbol which indicates different selection schemes of active
transmit antennas, and the second part with log2 M bits is mapped onto the signal
constellation symbols coming from the M -ary signal constellation set (e.g., QAM).

Hence, each SM signal carriers the information of Na log2 Mþ log2
Nt

Na

� �� �
bits.

At the receiver, the received signal y 2 C
Nr�1 can be expressed as y ¼ Hxþw,

where x 2 C
Nt�1 is the SM signal transmitted by the transmitter, w 2 C

Nr�1 is the
additive white Gaussian noise (AWGN) vector with independent and identically dis-
tributed (i.i.d.) entries following the circular symmetric complex Gaussian distribution

CN ð0; r2wÞ. H ¼ R
1
2
r ~HR

1
2
t 2 C

Nr�Nt is the correlated flat Rayleigh-fading MIMO chan-
nel, entries of ~H are subjected to the i.i.d. distribution CN ð0; 1Þ. Rr and Rt are the
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receiver and transmitter correlation matrices respectively [12]. The correlation matrix R
is given by rij ¼ r i�jj j, where rij is the i-th row and j-th column element of R, and r is
the correlation coefficient of neighboring antennas.

Figure 1 shows an example of spatial constellation symbol and signal constellation
symbol in spatial modulation 3D-MIMO system. The information bit stream is under
both spatial modulation and digital modulation, where spatial modulation increases the
energy efficiency and reduces complexity of signal demodulation, and digital modu-
lation improves system throughput.

3 Structured Compressed Sensing Based Signal Detection

3.1 Grouped Transmission Scheme

The SM signal xk ¼ eksk transmitted by the k th user in a time slot consists of two parts:
the spatial constellation symbol ek 2 C

nt and the signal constellation symbol sk 2 C.
Due to only a single RF chain employed at each user, only one entry of ek associated
with the active AE is equal to one, and the rest of the entries of ek are zeros, i.e., we
have

suppðekÞ 2 A; k ek k0¼ 1; k ek k2¼ 1 ð1Þ

where A ¼ 1; 2; . . .; ntf g is the spatial constellation symbol set. The signal constella-
tion symbol comes from L-ary modulation, i.e., sk 2 L, where L is the signal con-
stellation symbol set of size L. Hence, each user’s SM signal carries the information of
log2 Lð Þþ log2 ntð Þ bits per channel use (bpcu), and the overall throughput at the
transmitter is Kðlog2ðLÞþ log2 ntð ÞÞ bpcu.

At the transmitter, every G consecutive SM signals are divided into a group. The
signals in a group have the same active antenna selection scheme and share the same
spatial constellation symbol, i.e.,
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Fig. 1. Spatial constellation symbol and signal constellation symbol in SM 3D-MIMO system,
where Nt = 4, Na = 1, and 4QAM are considered as for an example.
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supp x1k
� � ¼ supp x2k

� � ¼ . . . ¼ supp xGk
� � ð2Þ

where x1k , x
2
k ,…, xGk are SM signal of the k th user in G consecutive symbol slots. Thus

they show the feature of structured sparsity, which can be exploited as priori infor-
mation to improve the performance of the signal detection.

At the receiver, due to the reduced number of RF chains at the BS, only MRF

receive antennas can be exploited to receive signals. Since the BS can serve K users
simultaneously, the received signal yq 2 C

MRF for 1� q�Q of the q th time slot can be
expressed as

yq ¼
XK

k¼1
yk;q þwq ¼

XK

k¼1
Hkxk þwq ð3Þ

where Hk 2 C
M�nt is the k th user’s MIMO channel matrix. Figure 2 is the illustration

of the grouped transmission scheme at the transmitter.

3.2 Subspace Pursuit Algorithm

The SP algorithm starts by selecting the set of K most reliable information symbols [13,
14]. After each iteration, the estimated support set of size K will be updated according
to the correlation between the measurement vector y and the channel submatrix. Then,
the wrong indices will be removed from the estimated support set. The iteration stops
when the transient residual is larger than the previous one. The flowchart of SP
algorithm is shown in Fig. 3, where input is measurement vector y, channel matrix H,
number of active antennas Na and output is the estimated signal.

Fig. 2. Illustration of the grouped transmission scheme at the transmitter, where K = 2, Nu = 4,
Na = 1, G = 2, Nt = 8, Nr = 4, and 4QAM are considered.
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3.3 Structured Subspace Pursuit Algorithm

Different from the SP algorithm, the spatial constellation set will be exploited as priori
information in the SSP algorithm. It means that the estimated support set during each
iteration should belong to the predefined spatial constellation set. During each iteration,
the potential true indices will be obtained according to the correlation between the
MIMO channels and the residual in the previous iteration, and then the estimated
support set will be updated after the least squares. The flowchart of SSP algorithm is
shown in Fig. 4.

It is proved that with the same size of the measurement vector the recovery per-
formance of SCS-based signal detectors is superior to that of conventional CS-based
signal detectors [15]. The SSP algorithm can solve multiple sparse signals with the
common support set but having different measurement matrices [11].

The description of the SSP algorithm is given as follows:
1. The parameters of input are: the measurement vector y, the channel matrix H, the

number of active antennas Na.
2. In the support merging section, according to the correlation u tð Þ between the

MIMO channels and the residual in the previous iteration, a potential support set P
which makes the correlation u tð Þ largest will be selected from the predefined spatial
constellation set.

3. After updating the current support set Tk , wrong indices will be removed and
most likely indices will be selected according to the least squares.

4. The parameter of output is the estimated signal x̂ðtÞ ¼ H tð Þ
Tk

� 	y
.

Fig. 3. Flowchart of SP algorithm.
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4 Performance Analysis

The analysis of different signal detecting algorithms including SP, SSP, MMSE and ZF
is performed and analyzed using Bit Error Rate (BER) verses Signal to Noise Ratio
(SNR) plots in Fig. 5, where K ¼ 24, Na ¼ 1, Nu ¼ 4, Nr ¼ 64, G ¼ 1, and 16QAM
are considered. One can observe that CS-based signal detectors give better performance
than conventional signal detectors, especially when the SNR is comparatively high.

Figure 6 shows BER of SP algorithm and SSP algorithm over different levels of
QAM modulation, where K ¼ 24, Na ¼ 1, Nu ¼ 4, Nr ¼ 64, G ¼ 1 are considered.
From the figure, it is possible to conclude that the performance of SSP algorithm is
stable and reliable. Moreover, the lower the level of QAM modulation is, the better the
SSP algorithm performs. On the other hand, the SP algorithm suffers from compara-
tively high performance loss even under modulation of 16 QAM when the SNR is no
more than 20 dB.

Figure 7 shows BER of the SSP algorithm over different levels of PSK modulation,
where K ¼ 24, Na ¼ 1, Nu ¼ 4, Nr ¼ 64, G ¼ 1 are considered. From the figure, it can
be observed that the SSP algorithm performs. It is worth noting that BER curves of the
proposed algorithm are very close under the modulations of BPSK, QPSK and 8PSK.
Also we can deduct that the proposed algorithm can work very well under the low
levels of PSK modulation while the BER performance may deteriorate under the high
levels such as 32PSK.

Fig. 4. Flowchart of SSP algorithm.

Performance Evaluation of Structured Compressed Sensing 99



Figure 8 shows BER of SSP algorithm with different sparsity level and a number of
received antennas. The figure shows that with larger sparsity level and more received
antennas the SSP algorithm performs better.

0 5 10 15 20 25
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR(dB)

B
E

R

SSP
SP
MMSE
ZF

Fig. 5. BER verses SNR plots for different signal detecting algorithm, where K ¼ 24, Na ¼ 1,
Nu ¼ 4, Nr ¼ 64, G ¼ 1, and 16QAM are considered
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Fig. 6. BER verses SNR plots for SP algorithm and SSP algorithm over different levels of QAM
modulation, where K ¼ 24, Na ¼ 1, Nu ¼ 4, Nr ¼ 64, G ¼ 1 are considered.
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Fig. 7. BER verses SNR plots for SSP algorithm over different levels of PSK modulation, where
K ¼ 24, Na ¼ 1, Nu ¼ 4, Nr ¼ 64, G ¼ 1 are considered.
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Fig. 8. BER verses SNR plots for SSP algorithm over different sparsity level and number of
received antennas.
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5 Conclusion

In this paper, we have evaluated the state-of-the-art structured compressed sensing
based SSP algorithm in the scenarios of various modulation levels. First of all, we
reviewed the structured signal detection method and pointed out its advantage. Sec-
ondly, simulation results have been provided to confirm the merits of the proposed
methods in detection. Our study was also found that the computational complexity of
the proposed method is comparable with conventional methods, e.g. MMSE and ZF.
Finally, we gave the additional simulation results to evaluate the SSP algorithm which
can perform better in the scenarios of more sparsity level as well as larger number of
received antennas.
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