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Abstract. The compressed signal reconstruction of the sensing node has been a
hot research topic for the mobile Internet. At present, some reconstruction
algorithms finally adopt the minimum l1 norm optimization algorithm. In order
to solve the roughness, poor derivability and other defects of the minimum l1
norm function, this paper constructs the smooth graduation algorithm based on
l1 norm, proves the monotonicity of the function and the sequence convergence
of the optimal solution, and finally verifies the effectiveness of the function
through examples. In the simulation experiment, the signal reconstruction
algorithm and the classical OMP algorithm were compared, and the results show
that it receives better reconstruction effects, small error and high precision.
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1 Introduction

In the mobile Internet, the wireless sensor network is characterized by a large number
of nodes and large data acquisition and transmission capacity. However, due to its
small volume of its own node and the node energy restriction, how to reduce the energy
consumption of nodes and prolong the network life cycle is a key challenge confronted
by the development and application of the wireless sensor network technology [1, 2].
As a new sampling theory developed in recent years, compressed sensing (CS) [3–5]
may achieve the data compression by using the redundancy of the wireless sensor
network data, reduce the transmission of redundant information, and provide ideal
solutions to reducing the energy consumption of network nodes.

In the compressed sensing theory, the signal reconstruction has become the key to
obtaining accurate original signals and produced direct impacts on the measurements
required by the reconstruction, i.e., obtaining the transmission data volume required by
accurate obtaining of network data. Common signal reconstruction algorithms include
the minimum convex optimization algorithm based on l1 norm and the minimum
greedy algorithm based on l0 norm. The convex optimization algorithm is featured by
large calculation and good reconstruction effects, which is represented by Basis Pursuit
(BP) [6], Interior-point-iterative Algorithm, Gradient Projection For Sparse (GPSR)
[7], Projection onto Convex sets (POCS) [8], Homotopy Algorithm [9] and Least
Angle Regression (LARS) [10]. In spite of good reconstruction effects, the convex
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optimization algorithm are blocked easily when handling massive signal questions
because of high computational complexity and slow computation speed. During the
iteration each time, the greedy algorithm selects a local optimal solution to gradually
get close to the original signals that are characterized by poor accuracy and high
computation speed characteristics, which are represented by that Matching Pursuit
(MP) [11], Orthogonal Matching Pursuit (OMP) [12] and Stagewise Orthogonal
Matching Pursuit (StOmp) [13]. Literature [14] proposed to first use the arc-tangent
function l0 approximation norm, establish the noisy sparse reconstruction model
approximate to l0 norm, solve the model through quasi-Newton method, and analyze
the convergence of the algorithm. Numerical simulations show that the proposed
algorithm needs less measurements when reconstructing the sparse vectors and has
high accuracy; Literature [15] proposed a new smooth function sequence approxima-
tion norm, solve by combining with the gradient projection method, improve the
robustness of the algorithm by further proposing to adopt Singular value decomposition
(SVD), and achieve the accurate reconstruction of the sparsity signal; Literature [16]
put forward the fast smooth norm algorithm - FSL0 algorithm according to the char-
acteristics of Gaussian smoothing function gradient and Hesse matrix as well as basic
principles of Newton; Literature [17] utilized the signal sampling value, Laplace prior
distribution and Gaussian likelihood model, and derived the signal posterior probability
density estimate; finally, converted the MAP estimation process into a weighted iter-
ative L1 norm minimization question, and the signal reconstruction performance had
been improved significantly.

The ideal signal reconstruction is to adopt the signal reconstruction based on the
minimum l0 norm. However, this is an NP question, so it is converted into a solution to
l1 minimum norm. Since the minimum l1 norm is not smooth, this paper constructs,
presents and proves the minimum l1 norm based on the smooth graduation. Simulation
results show that the algorithm has better reconstruction effects than the traditional
OMP algorithm.

2 Signal Reconstruction Based on Smooth Graduation l1
Norm

The ideal signal reconstruction is obtained by solving the original reconstruction model
or the model based on the minimum l0 norm [23, 24]. However, this is an NP question,
so it is converted to a solution to an l1 minimum norm. Since this norm is not smooth,
this paper constructs a smooth graduation algorithm based on the l1 norm, describes the
monotonicity of the function and the convergence of the optimal solution, and uses this
function to perform the signal reconstruction.

2.1 Basic Knowledge

When solving the compressed sensing signal reconstruction, the l0 norm solution is
given as follows:
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min dðxÞ ¼ xk k0
s:t: Ax ¼ y

�
ð1Þ

The l0 norm is an NP question. It has been proved that signal reconstruction based
on the minimum l0 norm is equivalent to that based on solving the minimum l1 norm
[18, 19]. Therefore, signal-reconstruction questions are handled by solving the mini-
mum l1 norm with the following model:

min dðxÞ ¼ xk k1
s:t: Ax ¼ y

�
ð2Þ

2.2 The Improved l1 Question Model

An algorithm based on the l1 solution cannot be derived, so Eq. 2 cannot be solved by
an algorithm based on massive derivation. Equation 2 is a convex programming
question that can be converted to one of linear programming. However, the size of the
original question is doubled and the computing space is increased. A solution involving
large-scale data is characterized by slow computation speed and poor signal-
reconstruction effects. This paper adopts smooth, gradual, and progressive ideas,
constructs a smoothing function based on the l1 norm, studies the monotonicity and
optimal sequence, and finally solves Eq. 2.

Assuming Definition 1, when x 2 RN ; t[ 0, then

FðxÞ ¼ xk k1¼
XN
i¼1

xij j FtðxÞ ¼
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ

c
t2

r
ð3Þ

Theorem 1:

lim
t!1FtðxÞ ¼ FðxÞ; FtðxÞ ¼

XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ

c
t2

r
; x 2 RN ð4Þ

Proof:

F
0
tðxÞ ¼

XN
i¼1

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ c

t2

q � ðx2i þ
c
t2
Þ0

¼
XN
i¼1

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ c

t2

q � ð�2c
t3

Þ

¼
XN
i¼1

�c

t3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ c

t2

q

¼
XN
i¼1

�c

t2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtxiÞ2 þ c

q \0

ð5Þ
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Then, ftkg is a monotonically decreasing integer sequence.
The following proves that FtðxÞ is bounded.
For any x and t,

FtðxÞ � FðxÞ ¼
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ

c
t2

r
�
XN
i¼1

xij j

¼
XN
i¼1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ

c
t2

r
�

ffiffiffiffiffi
x2i

q
Þ

¼
XN
i¼1

c
t2ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2i þ c
t2

q
þ

ffiffiffiffiffi
x2i

p
�
XN
i¼1

c
t2ffiffi
c

p
t

¼
ffiffiffi
c

p
t
N

ð6Þ

Therefore FðxÞ�FtðxÞ�FðxÞþ
ffiffi
c

p
t N, Because:

lim
t!1½FðxÞþ

ffiffiffi
c

p
t
N� ¼ lim

t!1FðxÞþ lim
t!1

ffiffiffi
c

p
t
N

¼FðxÞþ 0

¼FðxÞ
ð7Þ

This is simplified to

0�FtðxÞ � FðxÞ�
ffiffiffi
c

p
N
t

ð8Þ

Take the limit toward both sides and obtain lim
t!1FtðxÞ ¼ FðxÞ. The proof ends.

According to Theorem 1, question 1 can be rewritten as

min FtðxÞ
s:t: Ax ¼ yðt ! þ1Þ ð9Þ

Given that there is a continuous real number t, it is very difficult to solve Eq. 9.
Through discretization of t, we can obtain

min FtðxÞ
s:t: Ax ¼ yðtk ! þ1Þ ð10Þ

where ftkg is a monotonically increasing integer sequence.
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Theorem 2: The existence set S ¼ fx jFtðxÞ�FkðxÞg has certain limits. The optimal
solution to problem 5 is x�ðtkÞ, i.e., t ¼ tk , so x� is the optimal solution of Eq. 1, and
fx�ðtkÞg existence sub-column converges to x�.

Proof: Since Ftðx�ðtkÞÞ�Ftðx�ðtkþ 1ÞÞ�Ftþ 1ðx�ðtkþ 1ÞÞ and F1ðxÞ ¼ FðxÞ�FtðxÞ,
the combination set S has limits and fx�ðtkÞg has a certain limit, so there is a converged
sub-sequence fx�ðtkÞg. When the variable i approaches infinity, fx�ðtkÞg ! �x, and it is
proved that �x ¼ x�. Proof by contradiction is as follows:

Assume �x 6¼ x�,Fðx�Þ � Fð�xÞ\0.
Taking e0 [ 0 and assuming Fðx�Þ � Fð�xÞ ¼ �e0, and lim

t!1FtðxÞ ¼ FðxÞ, then

9I1 [ 0; 8i � I1; Ftðx�Þ � Fðx�Þ\ e0
2

ð11Þ

Therefore,

Ftðx�Þ � Fð�xÞ ¼ Ftðx�Þ � Fðx�ÞþFðx�Þ � Fð�xÞ\� e0
2

ð12Þ

Because

lim
t!1Ftðx�ðtkÞÞ ¼ F1ð�xÞ ¼ Fð�xÞ ð13Þ

Therefore,

9I2 [ 0; 8i � I2;Ftð�xÞ � Fðx�ðtkÞÞ\ e0
2

ð14Þ

Therefore, 8i�maxfI1; I2g, the following equation can be obtained:

Ftðx�Þ � Fðx�ðtkÞÞ ¼ Ftðx�Þ � Fð�xÞþFð�xÞ � Fðx�ðtkÞÞ\0 ð15Þ

Ftðx�Þ\Ftðx�ðtkÞÞ and x�ðtkÞ are obtained as the optimal solution of problem 5, so
�x ¼ x�.

Theorem 3: Problem 6 is a convex programming problem.

Proof: Suppose set D ¼ fx jAx ¼ yg.
Where A is the matrix of N 	M, x 2 RN ; y 2 RM

For 8xð1Þ; xð2Þ 2 D and 8k 2 ½0; 1�

A½kxð1Þ þ ð1� kÞxð2Þ�
¼ kAxð1Þ þ ð1� kÞAxð2Þ
¼ kyþð1� kÞy
¼ y

ð16Þ

So kxð1Þ þ ð1þ kÞxð2Þ 2 D. And therefore D is Convex set.
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The following proves that the objective function FtðxÞ ¼
PN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ c

t2

q
; x 2 RN x is

a strictly convex function on the set D.

FtðxþDxÞ ¼
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi þDxiÞ2 þ c

t2k

r

�
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ

c
t2k

r
þ
XN
t¼1

xiDx
0
iffiffiffiffiffiffiffiffiffiffiffiffiffi

x2i þ c
t2k

q
¼ FtðxÞþrFtðxÞTDx

ð17Þ

So FtðxÞ is a convex function on D.

In fact r2FtðxÞ ¼

tkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðx1tkÞþ c�3

p � � � 0

0 . .
.

0
0 tkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðxwtkÞþ c�3
p

2
6664

3
7775 2 RN	M is Positive-definite

matrix.
So FtðxÞ is a strictly convex function.

Theorem 4: Suppose x�ðtkÞ is the optimal solution of t ¼ tk for Eq. 10, and x� is the
global optimal solution to problem 2. Therefore, for any tk [ 0 and k ! þ1, then

x� � x�ðtkÞk k�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxf

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðxitkÞ2 þ c�3

q
t2k

g ffiffiffi
c

p
N

vuut ð18Þ

Proof: Select the target function FtðxÞ. Its x ¼ x�ðtkÞ Taylor expansion is

FtðxÞ ¼ Ftðx�ðtkÞÞþrFtðx�ðtkÞÞTðx� x�ðtkÞÞþrFtðx�ðtkÞÞðx� x�ðtkÞÞ
þ oðx� x�ðtkÞÞTðx� x�ðtkÞÞ

ð19Þ

Given x ¼ x� and the necessary conditions of the first-order derivative, the fol-
lowing equation can be obtained:

FtðxÞ � Ftðx�ðtkÞÞ ¼
XN
i¼1

1
2

tkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðxitkÞ2 þ c�3

q ðx� � x�ðtkÞÞ2 þ oðx� x�ðtkÞÞTðx� x�ðtkÞÞ ð20Þ

Because r2FtðxÞ is a diagonal matrix, the following equation can be obtained:

FtðxÞ � Ftðx�ðtkÞÞ�minf tk

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðxitkÞ2 þ c�3

q g x� � x�ðtkÞk k22 ð21Þ
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Because FtðxÞ is monotonously decreasing over t, we can obtain the inequality
Ftðx�ðtkÞÞ � Ftþ 1ðx�ðtkÞÞ\0. x� is the global optimal solution of problem 2, and the
following equation can be obtained:

FtðxÞ � Ftðx�ðtkÞÞ\0 ð22Þ

x� � x�ðtkÞk k22 �maxf
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðxitkÞ2 þ c�3

q
tk

gðFtðx�Þ � Fðx�ðtkÞÞÞ

¼ maxf
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðxitkÞ2 þ c�3

q
tk

gðFtðx�Þ � Fðx�Þ þFðx�Þ � Fðx�ðtkÞ
þ Fðx�ðtkÞ � Ftðx�ðtkÞÞÞ

� maxf
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðxitkÞ2 þ c�3

q
tk

gðFtðx�Þ � Fðx�ÞÞ

ð23Þ

Substitute Eq. 8 into the above equation to obtain 0�Ftðx�Þ � Fðx�Þ�
ffiffi
c

p
N
t , i.e.,

x� � x�ðtkÞk k�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxf

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðxitkÞ2 þ c�3

q
t2k

g ffiffiffi
c

p
N

vuut ð24Þ

The proof ends.
Therefore, according to Theorem 2, the algorithm of Eq. 25 is as follows.

Algorithm 1 steps:
Step 1: Enter the matrix A and t0, the measured value y, the threshold e, and the
step h
Step 2: Given k ¼ 0; x�0ðt0Þ ¼ A

0
y

Step 3: Given tk ¼ t0 þ kh, obtain the optimal solution x�ðtkÞ of Eq. 25.
Step 4: Given x�ðtkÞ � x�ðtk�1Þk k[ e, set k ¼ kþ 1, return to step 3, and
otherwise output x�ðtkÞ

2.3 Algorithm Examples

Suppose we have A ¼
1 0 3 4 5 8 2 3 �1 5
0 �10 4 1 2 3 4 7 8 3
�9 15 4 3 8 6 4 7 2 4
2 5 1 7 6 3 �5 0 9 7

2
664

3
775, y ¼

1

4

2

5

0
BBB@

1
CCCA;

assume tk ¼ 10þ 200k, Ftðx�ðtkÞÞ, x�ðtkÞ � x�ðtk�1Þk k2, and the computational results
of x�ðtkÞ can be obtained according to the algorithm solution process, as shown in
Tables 1 and 2:
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According to Tables 1 and 2, it is feasible to discrete the question, proving that
Eq. 10 has effects and demonstrating that the algorithm 1 can achieve signal
reconstruction.

3 Reconstructed Signal Algorithm Based on Smooth
Approximation Norm lp

In the previous chapter, we improved the signal reconstruction based on norm l1 by
constructing a smooth approximation function. However, the pseudo-norm xk kp
0� p� 1ð Þ rather than xk k1 is a better approximation of the norm xk k0 in the original
problem. This chapter adopts the maximum entropy function smooth approximation lp,
proposes the MEFM algorithm, and validates using a one-dimensional signal-
reconstruction example.

3.1 Preliminary Knowledge

Restoration signals will sometimes receive better effects by adopting lpð0\p\1Þ norm
optimization than by adopting the l1 norm optimization method.

The pseudo-norm xk kp 0� p� 1ð Þ rather than xk k1 is more approximate to the
norm xk k0 in the original problem. The problem model is as follows:

Table 1. Numerical results

k Ftðx�ðtkÞÞ jjx�ðtkÞ � x�ðtk�1Þjj2
1 1.07768 0.55466
2 1.05858 0.04529
3 1.05232 0.00919
4 1.0492 0.00859
6 1.04569 0.00379
8 1.04352 0.00291
10 1.0432 0.00121

Table 2. Numerical results

k x�ðtkÞ
1 ð�0:02517 �0:07485 0:00241 �0:00669 �0:01147 0:72901 0:06089 0:00701 �0:01242Þ
2 ð�0:02519 �0:07131 0:00129 �0:00361 �0:00621 0:71601 0:08321 0:00401 �0:00653Þ
3 ð�0:02521 �0:07129 0:00091 �0:00312 �0:00521 0:71982 0:08643 0:00261 �0:00489Þ
4 ð�0:02521 �0:07129 0:00091 �0:00312 �0:00521 0:71982 0:08643 0:00261 �0:00489Þ
6 ð�0:02497 �0:06751 0:00041 �0:00125 �0:00219 0:69758 0:09999 0:00239 �0:00231Þ
8 ð�0:02492 �0:06763 0:00038 �0:00101 �0:00149 0:59501 0:10152 0:00099 �0:00108Þ
10 ð�0:02516 �0:06731 0:00029 �0:00103 �0:00129 0:69371 0:10371 0:00081 �0:00128Þ
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min dðxÞ ¼ xk kp
s:t: Ax ¼ y

ð0\p\1Þ
�

ð25Þ

When choosing the sparse vector to be the global lpð0\p\1Þ minimum solution of
Ax = y, fewer y observations are required than with the l1 norm optimization method
[20]. In addition, existing proved sufficient conditions for lower signal reconstruction
requirements than the norm l1 [21–23]. This paper constructs a smooth approximation
function of the norm lpð0\p\1Þ by the maximum entropy function, thus realizing the
signal reconstruction.

In formula 25 for the lpð0\p\1Þ norm minimization, the objective function can
be expressed as

xk kp¼
Xn
i¼1

xij jp
 !1

p

¼
Xn
i¼1

maxfxi;�xigð Þp
" #1

p

ð26Þ

So, formula 25 can be written as

min uðxÞ ¼ Pn
i¼1

ðmaxfxj � xigÞp
� �1

p

s:t: Ax ¼ y
ð0\p\1Þ

8<
: ð27Þ

where uðxÞ is the objective function.
Since the objective function in formula 8 is not derivable, the smoothing constraint

algorithm cannot be employed. This paper constructs a smoothing function to
approximate formula 27 and transforms the problem into a constrained smoothing
problem that can be solved using the smooth constraint algorithm.

3.2 Smooth Approximation of the Norm lp in the Algorithm

The maximum entropy function q�1 In½expðq tÞþ expð�q tÞ� is a smooth approxima-
tion of the maximum function max{t, −t} [24], where q[ 0 and t is a variable. By
substituting the function maxfxi;�xig for q�1 In½expðq xiÞþ expð�q xiÞ� in for-
mula 27, we obtain the following smoothing problem:

min Cðx; qÞ ¼ Pn
i¼1

ðq�1 ln½expðqxiÞþ expð�qxiÞ�p
� �1

p

s:t: Ax ¼ y
ð0\p\1Þ

8<
: ð28Þ

Lemma 1 [23]. 8p 2 f1; 2; . . .; kg; k 2 N; gpðxÞ : Rn ! R is assumed to be a con-
tinuously differentiable function,

hðxÞ ¼ max
1� p� k

½gpðxÞ�;Hðx; pÞ ¼ 1
p
ln
X1

expðqgpðxÞÞ�
" #

ð29Þ
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Then, the function Hðx; pÞ has the following properties:

(1) 8x 2 Rn and 0\q1\q2, there exists Hðx; q1Þ�Hðx; q2Þ
(2) 8x 2 Rn and q[ 0, there exists hðxÞ�Hðx; qÞ� hðxÞþ ln k

q

(3) 8x 2 Rn and q[ 0, there exists lim
q!1Hðx; qÞ ¼ hðxÞ.

Lemma 2: The function Cðx; pÞ ¼ jj lnðeqx þ e�qxÞ
q jjp ¼ ½Pn

i¼1
ðlnðeqx þ e�qxÞ

q Þp�1p 8x 2 Rn and

q[ 0, there exists

uðxÞ�Cðx; qÞ�uðxÞþ
ffiffiffi
nq

p
ln 2
q

ð30Þ

where uðxÞ ¼ xk kp¼ ðPn
i¼1

xij jpÞ1p.

Proof: According to Lemma 1, 8x 2 Rn; q[ 0, there exists the relation:

0� 1
q
ln½expðqxiÞþ expð�qxiÞ� �maxfxi;�xig� ln 2

q
ð31Þ

According to the definitions of Cðx; qÞ and uðxÞ, this paper concludes that

Cðx; pÞ � uðxÞ ¼ jj lnðe
qx þ e�qxÞ
q

jjp � jjxjjp

� jj lnðe
qx � e�qxÞ
q

� xjjp

¼
Xn
i¼1

ðlnðe
qxi þ e�pxiÞ

q
Þ � jxijp

" #1
p

ð32Þ

According to formula 9, we conclude that

0�Cðx; qÞ � uðxÞ�
ffiffiffi
np

p
ln 2
q

ð33Þ
The proof ends.

Lemma 3: 8x 2 Rn; q[ 0, there exists

uðxÞ�Cðx; qÞ�uðxÞþ
Xn
i¼1

ðln 2
q
Þ

" #1
p

¼ uðxÞþ
ffiffiffi
np

p
ln 2
q

ð34Þ

And

lim
q!1Cðx; qÞ ¼ uðxÞ ¼ xk kp ð35Þ

The following hypotheses are assumed for problem 1.
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The rank of the matrix A is m, and the variable x ¼ xB; xN½ �T , where xB ¼ ðxB1 ;
xB2 ; . . .; x

B
mÞ, is the vector corresponding to the basic vector; xN ¼ ðxNmþ 1; x

N
mþ 2; . . .;

xNn ÞT is the vector corresponding to the non-basic variable; B is the m-th column of
matrix A corresponding to the basic vector; N is the (n–m)-th column corresponding to
the non-basic variable; the matrix A ¼ ½B;N�; and the feasible region fx jAx ¼ yg is not
empty.

In the above hypotheses, the constraint condition Ax ¼ y in (1) can be written as

BxB þNxN ¼ y ð36Þ

xB ¼ B�1ðy� NxNÞ is available. Substitute xB into the objective function of
problem 3 to transform formula 3 into the following unconstrained problem:

min
x2R

MðxN ; qÞ ¼ CðB�1ðy� NxNÞ; xN ; qÞ ð37Þ

This paper obtains the respective optimal solutions of problems 1 and 2 by using x�

and xðq�Þ.
Algorithm Steps

Step 1: Take ðxNÞ0 2 Rn�m and the error 1[ b[ 0 ; d 2 ð0; 1Þ
Step 2: q� ¼

ffiffiffi
np

p
ln 2

bð1� dÞ
Step 3: Solve formula 10, i.e., solve the following problem:

min
x2R

MðxN ; q�Þ ¼ CðB�1ðy� NxNÞ; xN ; q�Þ ð38Þ

where MðxN ; q�Þ is the objective function.

The algorithm has the following properties:

Theorem 5: Assume that the optimal solution of problem 12 is ðxNðq�ÞÞ� and the
point generated by the algorithm satisfies the condition

M xN
� �s

; q�
� ��M xN q�ð Þ� ��

; q�
� �� db ð39Þ

Then uðxsÞ � uðx�Þ� b, where, s is the number of iterations.

Proof: x�ðq�Þ is the optimal solution of formula 3, i.e.,

Cðx�ðq�Þ; q�Þ�Cðx�; q�Þ ð40Þ

From formula 30, we obtain

uðx�Þ�Cðx�; q�Þ �uðx�Þ þ
ffiffiffi
np

p
ln 2

q�
uðx�ðq�ÞÞ �Cðx�ðq�Þ; q�Þ�uðx�ðq�ÞÞþ

ffiffiffi
np

p
ln 2
q�

ð41Þ
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So, we obtain

Cðx�ðq�Þ; q�Þ�Cðx�; q�Þ�uðx�Þþ
ffiffiffi
np

p
ln 2

q�
ð42Þ

and
From formula 30, we obtain

uðxsÞ�Cðxs; q�Þ ð43Þ

By adding formulas 42 and 43, we obtain

uðxsÞ � uðx�Þ�Cðxs; q�Þ � Cðx�ðq�Þ; q�Þþ
ffiffiffi
np

p
ln 2

q�
ð44Þ

and from formula 38, we obtain

M xNðq�Þð Þ�; q�� � ¼ C x�ðq�Þ; q�ð Þ
M xNð Þs; q�� � ¼ C xs; q�ð Þ

�
ð45Þ

From formulas 39 and 45, we obtain

C xs; q�ð Þ � C x�ðq�Þ; q�ð Þ� db ð46Þ

From formulas 45 and 46, we obtain

uðxsÞ � uðx�Þ� dbþ
ffiffiffi
np

p
ln 2

q�
ð47Þ

Substituting q� ¼
ffiffiffi
np

p
ln 2

bð1� dÞ into formula 47, we obtain

uðxsÞ � uðx�Þ� b ð48Þ

The proof ends.

Theorem 6: Assume that xðqÞ ¼ x1 qð Þ; x2 qð Þ; � � � xn qð Þð Þ is the optimal solution of
formula 39. If lim

p!þ1 x qð Þ exists, we assume lim
p!þ1 x qð Þ ¼ x� ¼ ½x�1; x�2; � � � ; x�n�T . If

there is x�k ¼ 0ð1� k� nÞ in x�1; x
�
2; � � � ; x�n, we obtain

lim
p!þ1qxk qð Þ ¼ 0 ð49Þ

Then x� is the optimal solution to formula 25.
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Proof: 8x 2 Rn, 8q[ 0, and we obtain the equation below by Lemma 3:

uðxÞ�C x; qð Þ�u xð Þþ
ffiffiffi
np

p
ln 2

q�
ð50Þ

In formula 30, assuming q ! þ1, we can obtain the following equation
according to the conditions in Theorem 2:

lim
p!þ1CðxðqÞ; qÞ ¼ lim

p!þ1C x�; qð Þ ¼ lim
p!þ1u x qð Þð Þ ¼ uðx�Þ ¼ x�k kp ð51Þ

Since x qð Þ is the optimal solution of formula 3, for the point x satisfying Ax ¼ y,
we can obtain C xðqÞ; qð Þ�u x; qð Þ.

So,

lim
p!þ1C x; qð Þ ¼ uðxÞ ¼ xk kp � x�k kp ð52Þ

The following proves to be the feasible solution of problem 3. Since xðqÞ is the
optimal solution of formula 9, Ax qð Þ ¼ y.

Assume lim
p!þ1 x; qð Þ ¼ x�. Then we obtain Ax� ¼ y, i.e., x� is the optimal solution

of formula 30.

4 Experimental Description

The one-dimensional signal is reconstructed by adopting the proposed algorithm and
OMP algorithm. Where, the reconstruction signal sparsity is 6, the signal length is 256,
the signal observation M is 64, f1 ¼ 50, f2 ¼ 100, f3 ¼ 200, f4 ¼ 400, fs ¼ 800 and
ts ¼ 1=fs.

x ¼ 0:3 sinð2p � 50 � ts � tsÞþ 0:6 sinð2p � 100 � ts � tsÞþ 0:1 sinð2p � 200 � ts �
tsÞþ 0:9 sinð2p � 400� ts � tsÞ, the test results are shown in Fig. 1:

Since the measured values must satisfy M�K � logðnkÞ, when the value of M is 64,
the sampling rate M=n is 0.25. Taking taken p as 0.25, b as 0.5 and d as 0.02, Figs. 2
and 3 shows that these two algorithms receive excellent reconstruction effects.
According to Table 3, at the same sampling rate, the signal reconstruction effects of the
proposed algorithm are superior to OMP algorithm with small reconstruction errors.
Besides, OMP algorithm needs to obtain the known signal sparsity K at running time
and the proposed algorithm does not need it, so the proposed algorithm has more
convenient computation and high efficiency.
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Fig. 1. Original signal and frequency-domain signal

-0.8

0.6

-0.6

0.2

0 50 100 150 200 250 300

1

-1

0.8

0.4

-0.4

-0.2

0

Recovery
Original

Fig. 2. Proposed reconstruction

Research on Compressed Sensing Signal Reconstruction Algorithm 91



5 The References Section

The signal reconstruction is an important part of the compressed sensing. This paper
constructs the l1 norm function based on the smooth graduation. By proving that the
function has asymptotic monotonicity and sequence convergence of the optimal
solution, this paper illustrates that the proposed algorithm can improve the signal
reconstruction effects, further shows that the proposed algorithm has better results in
the reconstruction through the simulation, and the reconstruction errors are reduced.
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