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Abstract. Video quality assessment (VQA) aims to evaluate the video quality
consistently with the human perception. In most of existing VQA metrics,
additive noises and losses of primary visual information (PVI) are decoupled
and evaluated separately for quality assessment. However, PVI losses always
include different types of distortions such that PVI distortions are not evaluated
well enough. In this paper, a novel full-reference video quality metric is
developed by decoupling PVI distortions into two classes: compression distor-
tions and transmission distortions. First, video denoising method is adopted to
decompose an input video into two portions, the portion of additive noises and
the PVI portion. Then, maximal distortion regions searching (MDRS) algorithm
is designed to decompose PVI losses into transmission distortions and com-
pression distortions. Finally, the three distortions are evaluated separately and
combined to compute the overall quality score. Experimental results on LIVE
database show the effectiveness of the proposed VQA metric.
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1 Introduction

Full Reference (FR) video quality assessment (VQA) metrics refer to algorithms that
evaluate qualities of distorted videos with available reference videos. The goal is to
evaluate the quality consistently well with human visual system (HVS). Signal-to-noise
ratio (SNR) and peak SNR (PSNR) are the most widely used FR quality metrics. These
indices are simple to calculate and convenient to be adopted. But they show poor
consistency with subjective evaluations [1, 2].

Recently, the area of FR metrics has attracted a lot of attention [3–8]. Structure
similarity index (SSIM) [3] was presented as a metric using structural information. To
account for human perception of motion information, proper temporal weighting
schemes [4, 5] were proposed based on SSIM. Temporal distortions were also con-
sidered in VQA metrics during the recent years. A motion-based video integrity
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evaluation (MOVIE) index [6] was proposed to define the temporal distortion as the
differences between the filter responses along computed motion trajectories.
Spatio-temporal structural information was designed to evaluate the video perceptual
quality [7]. Both the spatial edge features and temporal motion characteristics [9, 10]
were accounted for with the structural features in the localized space-time regions.
Different types of distortions cause different degradations. A decoupling based metric
[8] were proposed by decomposing distortions into additive noises and distortions on
primary visual information (PVI). The overall score was computed by combining
evaluations of the two portions.

PVI distortions can be mainly classified into two types: compression distortions
(e.g., Ringing, Blocking artifacts) and transmission distortions (e.g., Packet loss).
However, these two types of distortions are with different characteristics. Compression
distortions are content-dependent distortions. Structural similarity based metrics can
perform well on this type of distortion. Transmission distortions which are introduced
by packet loss are content-independent distortions. Large and distinct distortion regions
randomly appear in video frames. Structural similarity based metrics, such as gradient
similarity based metrics [7] can not represent transmission distortions accurately
enough, especially when they occur in the original flat regions.

In this letter, a novel video quality metric is developed by decoupling PVI dis-
tortions. Video distortions are firstly decomposed into additive noises and PVI dis-
tortions using denoising method. Then, PVI distortions are classified into two typical
classes: compression distortions and transmission distortions. After evaluating each
type of distortions with rational metric, we combine the three evaluated results to
compute the overall quality score. Experimental results on LIVE database show the
effectiveness of the proposed VQA metric.

2 Proposed Method

We first give a brief overview of our approach before going into detail in subsequent
sections. The flowchart of the proposed model is shown in Fig. 1. The reference video
(Vr) and the test video (Vt) are firstly decomposed into additive noises (Ar and At) and

Fig. 1. Flowchart of the proposed model. Vr (Vt) is the reference (test) video, Ar (At) and Rr (Rt)
are the additive noises and reconstructed portions of Vr (Vt), respectively. D

T and DC are the
portions of transmission distortions and compression distortions, respectively.
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PVI portions (Rr and Rt) by using video denoising method. Then, PVI distortions (Rd,
the difference between Rr and Rt) are classified into compression distortions (DC) and
transmission distortions (DT), respectively. Different metrics are adopted to measure the
degradations of each type, respectively. Finally, a combining scheme is used to gen-
erate the overall perceptual quality score of the test video.

2.1 Decoupling Distortions

Algorithm 1 : Maximal Distortion Regions Search (MDRS)
Input: The distortion of denoised video D.
Initialization: region number: K, difference threshold: T , window size: ws, area

threshold: S
1: OutIndex = cell(1, K);
2: [W,H] = size(Rd); M = zeros(W,H);
3: for r = 1 : 4 : W do
4: for c = 1 : 4 : H do
5: if (length(find(Rd(r : r + 3, c : c + 3) > T )) == 16) then
6: M(r : r + 3, c : c + 3) = 1;
7: end if
8: end for
9: end for

10: for i = 1 → K do
11: Idx = find max conn regions(M); M(Idx) = 0;
12: if length(Idx) > S then
13: OutIndex(i) = Idx;
14: end if
15: end for
16: Output: OutIndex;

The reference video and test video are firstly decomposed into additive noise portions
and PVI portions via a video denoising method, called VBM3D [11]. A sparse 3D
transform-domain collaborative filtering is used in VBM3D. This method performs
good restoration on videos with additive noises. The differences between the additive
noise portions of the reference video and test video are used to evaluate the additive
distortions. This type of distortion may cause uncomfortable sensation. The differences
between the PVI portions of the reference video and test video are called PVI
distortions.

In order to represent the degradations more accurately, PVI distortions are
decomposed into compression distortions and transmission distortions using a method,
called Maximal distortion regions searching (MDRS). Compared to ringings and
blocky artifacts which were introduced by compression, transmission errors always
generate large areas of distortions. Furthermore, the strengths of these distortions are
always large in local regions. That is, the regions with large area and distinct distortions
tend to be with transmission errors. The goal of MDRS is to detect k maximal regions
with transmission distortions, such that k < K, where K is the preset maximal number
of regions. The PVI distortions Rd are the inputs. The outputs are the locations of the k
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regions. Details of MDRS are shown in Algorithm 1. (1) To achieve the constraint that
distortions in local regions are large, the PVI distortion (Rd) is split into 4 � 4
non-overlapping blocks. For each block, if all the absolute values of the differences are
larger than the preset threshold T, flags in the corresponding block of M are set to 1.
Otherwise, flags are set to 0. (2) The k maximal regions will be searched out by finding
the maximal 1−connected regions in M. Areas of regions that are bigger than the preset
threshold S are considered to be regions with transmission distortions. The other
regions are with compression distortions. In this letter, K, S, and T are set to 8, 32, and
12, respectively, from our empirical study.

2.2 Additive Distortion Evaluation

Since MSE presents a good match with additive noises [8], MSE is adopted to evaluate
the degradations of the additive noises as follows

SA ¼ SðAr;AtÞ ¼ 1� log10ð1þMSEðAr;AtÞÞ=log10ð2552Þ; ð1Þ

where Ar and At are the additive portions of the reference video and test video,
respectively; MSE(Ar, At) is the mean squared error between Ar and At.

2.3 Transmission Distortion Evaluation

Transmission distortions are always introduced by packet losses. They are susceptible
to the strength and area of the distortion regions. Therefore, transmission distortions are
evaluated as follows

ST DT
� � ¼ C1 � log10 S � T þ Pk

i¼1 Li � S2i
� �

C1 � log10 S � Tð Þ ; ð2Þ

where DT is the transmission distortion detected by MDRS method; Li, (i = 1, 2..k) is
the mean absolute values of the ith maximal distortion region; Si, (i = 1, 2..k) is the area
of the ith maximal distortion region; k is the region number; C1 = log10(255�W 2 �H2),
W and H are the image width and height, respectively; S and T are the preset area and
difference thresholds used in MDRS. Similar with (1), the denominator is a normal-
ization factor. Adding S � T is to avoid big leap occuring between the scores with and
without transmission errors.

2.4 Compression Distortion Evaluation

Compression distortions mainly include degradations such as blurrings, blocking
artifacts, and ringings. These degradations can be represented well by structural sim-
ilarity based metrics, such as SSIM, edge gradient similarities. In this work, gradient
similarities in spatial and temporal domain are computed to evaluate the compression
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distortions. For each pixel, spatio-temporal gradient vector g = (gx, gy, gt) is computed
with Sobel filters along x, y and t directions, respectively. The Sobel Kernel for t
direction is a 3 � 3 � 3 matrix [7]. To balance the effect of temporal and spatial
gradients, they are divided by the sum of positive filter coefficients, respectively.

Since human attention mainly allocated to the salient regions, salient pixels are
selected to evaluate the degradations of compression distortions. A pixel is considered
to be a salient pixel if its spatio-temporal gradient magnitude is above the certain
threshold f in either original video or distorted video [7]. The similarities between
pixels can be computed as

Sp xr; xtð Þ ¼ 2 grk k gtk kþC2

grð Þ2 þ gtð Þ2 þC2

 !a

� gr � gt þC2

grk k gtk kþC2

� �b

; ð3Þ

where C2 is the small constant to avoid the denominator being zero and is set as
C2 = 0.03 � 2552 [3]; gr and gt are the spatio-temporal gradient vectors of pixels xr
and xt in the reference and test frames, respectively. In (3), the first term represents the
similarity of magnitudes between gr and gt; the second term represents the similarity of
directions between gr and gt. a and b are the relative importance of the two terms. A big
value of a highlights the importance of vector magnitude. In this letter, a is set to 2 and
b is set to 1.

Furthermore, HVS is highly sensitive to blocking artifacts. To measure the

degradation of blocky artifacts, spatial gradient gb ¼ gbx ; g
b
y

� �
similarities of

down-sampled images are evaluated. The reference frame and test frame are down-
sampled with rate 8 in both the vertical and horizontal directions. Blocking artifacts are
evaluated as

Sb br; btð Þ ¼ 2 gbr
�� �� gbt

�� ��þC2

gbrð Þ2 þ gbtð Þ2 þC2

 !a

� gbr � gbt þC2

gbrk k gbtk kþC2

� �b

; ð4Þ

where br and bt are the pixels in the downsampled frames, i.e., mean values of 8 � 8
non-overlapped blocks of the reference and test frames, respectively. gbr and gbt are
spatial gradient vectors of br and bt, respectively. a and b are set to the same values as
in (4).

Some image regions have no apparent edge but are still with structural character-
istics. Structural similarity [3] is adopted to evaluate the degradations on spatial
structural information as

Ss xr; xtð Þ ¼ 2rxr ;xt þC2

r2xrr
2
xt þC2

; ð5Þ

where S(xr , xt) is the structural similarity between blocks centered at pixels xr and xt.
The block size is set to 11 � 11.
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Combine pixel similarities, blocking artifacts, and structural similarities, com-
pression distortion are deduced as

SC ¼ Avg
xr2Z

ð
X

ðSpðxr; xtÞSsðxr; xtÞSbðbr; btÞÞÞ: ð6Þ

where br (bt) is the corresponding down-sampled value of the block in which pixel xr
(xt) located; Z is the set of salient pixels which are degraded with compression dis-
tortions; Avg(�) is to calculate the average similarity of Z.

2.5 Overall Perceptual Quality

Distortion of different types will co-determine the perceptual quality of each frame. To
evaluate the distortions on PVI, (2) and (6) are used to compute the perceptual quality
score. Furthermore, the weights of the two evaluation parts are related to the noise
energy level of the two portions. The similarities of additive distortions can reflect that
of the compression distortions to some extent. Therefore, (1) are used to adjust the
relative importance of the two portions. Finally, we combine the evaluation of the three
portions, (1), (2), and (6). For each frame, the similarity can be computed as

SFðVr;VtÞ ¼ SSAT � S1�SA
C ð7Þ

Finally, all of the frame scores are averaged to give a final video quality index.

3 Experimental Results

In this section, the effectiveness of the proposed perceptual VQA metric is demon-
strated. The LIVE subjective quality video database [12] is used to evaluate the per-
formance of the proposed VQA metric. The LIVE database consists of 10 768 � 432p
reference videos and 150 distortion videos. Subjective scores (DMOS) were recorded
for all test sequences. The types of distortion comprised of MPEG-2 compression,
H.264 compression, and simulated transmission of H.264 compressed bit-streams
through error-prone IP networks and error-prone wireless networks. To detect the
salient pixels, f is set to 300 through exhaustive experiments. For comparison, results
with state-of-the-art VQA metrics are reported. The comparison metrics include PSNR,
SW-SSIM [4], MC-SSIM [5], MOVIE [6], STSI [7], VQM [13], and Picture Quality
Analyzer. Parts of the results are quoted from [7]. Pearson correlation coefficient
(PCC) and Spearman rank order correlation coefficient (SROCC) are used as perfor-
mance indicators.

The mapping function chosen for regression for each of the metrics is

f xð Þ ¼ b1 � b2

1þ exp � x�b3
b4

� � þ b2: ð8Þ

where {b1, b2, b3, b4} are the fitting parameters.
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Table 1 shows the PCC and SROCC on the LIVE video quality database. It can be
seen that the proposed metric significantly outperforms other metrics according to the
two indicators. The PSNR performs especially poorly on this database. It shows that the
conventional pixel based models are incapable to represent perceptual video quality.

In Table 1, it also can be seen that the proposed VQA metric performs significantly
better than the SSIM based metrics such as SW-SSIM (PCC increment: 0.23), and
MC-SSIM (PCC increment: 0.14). The reason is that the proposed decoupling based
method can detect different types of distortions and evaluate each type with the rational
measure. Furthermore, the proposed method performs better than the spatio-temporal
gradient similarity based method, STSI (Pearson CC increases by 0.04). This can be
attributed to that gradient similarity based method cannot represent transmission errors
accurately enough. Since transmission distortions are always flat regions without
apparent edges, gradient similarity based methods cannot detect these distortions well
enough, especially when transmission distortions occur in the original flat regions.

Table 2 shows the PCC on the four kinds of distortions in LIVE database. It
demonstrates that the proposed metric performs the best on three kinds of distortions
(Wireless, IP, and H.264). For MPEG2 distortion, even though it is not better than
VQM metric, it performs significantly better than all the other metrics (SROCC

Table 1. Performance comparison on the live database

Methods Pearson CC Spearman CC

VQM 0.702 0.723
MOVIE 0.786 0.810
STSI 0.779 0.778
SW-SSIM 0.585 0.596
MC-SSIM 0.679 0.698
PSNR 0.368 0.404
PQR (by PQA500) 0.695 0.712
DMOS (by PQA500) 0.695 0.711
Proposed 0.816 0.809

Table 2. Spearman CC Scores of VQA metrics on each kind of distortion in live database

Methods Wireless IP H.264 MPEG2

PSNR 0.4675 0.4108 0.4385 0.3856
VQM 0.7325 0.6480 0.6459 0.7860
STSI 0.7544 0.8072 0.8298 0.6624
SW-SSIM 0.5867 0.5587 0.7206 0.6270
PQR (by PQA500) 0.6464 0.7300 0.7455 0.6456
DMOS (by PQA500) 0.6426 0.7295 0.7427 0.6445
Proposed 0.7786 0.8069 0.8792 0.7023
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increment: at least 0.04). The proposed metric is rather robust to various types of video
distortions.

Figure 2 shows the scatter plots of the DMOS against the objective score by the
proposed VQA metric on the LIVE database. It can be seen that the proposed metric
performs well on videos from low quality to high quality.

4 Conclusion

In this letter, a VQA metric by decoupling PVI distortions has been proposed. Besides
decoupling videos into additive noises and PVI, PVI distortions are decomposed into
compression distortions and transmission distortions in order to evaluate PVI distor-
tions more accurately. Considering the different properties of the decomposed portions,
we separately evaluate their quality degradations with rational metrics. Experimental
results demonstrate the effectiveness of the proposed metric.
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