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Abstract. A noncoherent joint multiple symbol differential detection
(MSDD) and channel decoding framework is proposed for massive
multiple-input multiple-output (M-MIMO) system. The proposed frame-
work bears the potential to solve the high channel estimation overhead
for conventional coherent M-MIMO systems. Employing the autocorre-
lation receiver (AcR) and the belief propagation (BP) message passing
algorithm, the proposed soft-input soft-output (SISO) MSDD can be
easily integrated with advanced channel coding. Simulation results show
that the BER performance can be significantly improved within a few
iterations of the proposed scheme.
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1 Introduction

Massive multiple-input multiple-output (M-MIMO) system has attracted much
attention recently. Equipped with the massive antenna arrays, M-MIMO system
can achieve very high spectral efficiency and energy efficiency [1–3]. One of the
challenges of coherent M-MIMO is the acquisition of channel state information
(CSI). As the number of antennas at the base station grows large, the system
overhead and the complexity associated with channel estimation will become too
high and unaffordable. When considering low-complexity and low-overhead M-
MIMO system, some noncoherent transmission schemes may be more favorable.

One of the typical noncoherent detectors is the differential detection (DD)
with the autocorrelation receiver (AcR). Noting the performance of the simple
DD may suffer from noise enhancement, multiple symbol differential detection
(MSDD) is proposed to suppress the noise in the reference signals [4]. MSDD
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jointly detects multiple consecutive symbols, and it has been shown to achieve
comparable performance of the coherent counterpart in many interesting sce-
narios [5–7]. In particular, the authors of [8] introduce the MSDD to M-MIMO
system by noting the similarity between channel responses of the impulse radio
ultra-wide band (IR-UWB) system [9] and the single-user M-MIMO system.
Recently, MSDD has been combined with advanced channel coding techniques
to further improve the system performance for IR-UWB [10], which is built upon
an novel soft-input soft-output (SISO) framework. Regarding the M-MIMO sys-
tem, the hard-output decision metric in [8] is not suitable for SISO channel
decoding [11]. To this end, a soft-output decision metric and a corresponding
SISO framework is needed to further improve the performance of [8].

In this paper, we propose a SISO framework jointly employing MSDD and
channel decoding for single user M-MIMO system. The proposed framework
does not need any knowledge of CSI, which reduces the system overhead and
the intensive computational cost of acquiring CSI. In particular, we develop
the SISO MSDD scheme by belief propagation (BP) message passing on a factor
graph [12]. Since BP algorithm is also employed by advanced channel codes, such
as LDPC decoding, we unify the treatment for SISO MSDD and LDPC channel
decoding with a single factor graph and simple message flow scheduling. To be
more specific, the soft outputs of SISO MSDD are considered as the inputs of the
channel decoding, and the soft outputs of channel decoding are fed back to SISO
MSDD, which turns conventional soft-output MSDD into an iterative manner.
We also propose a simple blind method to estimate a key parameter needed for
detection. Simulations show the good performance of estimated parameter in
detection and that the bit error rate (BER) performance of the system can be
significantly enhanced by a few iterations with our proposed scheme.

2 System Model

We consider the uplink transmission scenario, where a signal-antenna user trans-
mit to a NR-antenna base station, and NR is very large. In each discrete time k,
the user transmits a symbol bk drawn from an M -ary PSK constellation.

rk = hkbk + nk, (1)

where the channel vector is denoted as hk = [hk,1, hk,2, ..., hk,NR
]T and the

noise vector is denoted as nk = [nk,1, nk,2, ..., nk,NR
]T . We consider a rich scat-

tering environment, so the channel coefficient hk,m from the user to the m-th
receive antenna and the i.i.d. AWGN components are modeled as a zero-mean
circularly-symmetric complex Gaussian random variables, i.e., hk,m ∼ CN (0, σ2

h)
and nk,m ∼ CN (0, σ2

n), which are independent over receive antennas. We con-
sider quasi-static channel, i.e., the channel coefficients remain stationary for a
sufficient long transmission [8]. Therefore, the time subscript k of the channel
vector hk in (1) is omitted for simplicity hereafter.
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3 Noncoherent Detection in Massive MIMO System

3.1 Noncoherent Autocorrelation Receiver

The performance of nonherent DD receiver can be improved by MSDD [4]. The
differential encoding is needed at the transmitter and 2-DPSK is used to facili-
tate the noncoherent detection. To avoid explicit CSI, the detector is built on the
autocorrelation receiver (AcR) which calculates the correlations between received
differential signal vectors. Each transmission burst consists of K data symbols
[a1, a2, ...., aK ], i.e., (K +1) DPSK modulated differential symbols [b0, b1, ..., bK ].
Correspondingly, the received differential signal vectors during the whole trans-
mission burst can be stacked into a matrix R = [r0, r1, r2, ..., rK ]T . In MSDD,
R is divided into S = K/M blocks, where M is the block size. The s-th block,
s = 1, ..., S, includes M data symbol vectors. The length of the observation win-
dow of the s-th block is M +1 and the window slides down M differential signal
vectors after they have been processed jointly, as shown in Fig. 1. The adjacent
observation windows overlap one differential signal vector, and different blocks
are processed independently.

Fig. 1. The illustration of the observation window of the s-th and the (s+1)-th block.
The solid lines denote the correlation operation between the received differential signal
vectors in a block.

Using the result of differential modulation b∗
kbl = (

∏k
z=l+1 az), we drive the

correlation operation between the k-th and the l-th received differential signal
vectors in the s-th block. So the correlation coefficient is calculated as

zk,l = rHk rl
= ||h||2 · b∗

kbl + nk,l ,

= Eg · (
k∏

z=l+1

az) + nk,l, (2)
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nk,l = b∗
k · hHnl + nH

k h·bl + nH
k nl. (3)

We stack all zk,l of the s-th block into a vector zs = [zk,l], k = (s − 1)M +
1, ..., sM , l = (s − 1)M, ..., k − 1, which contains M(M + 1)/2 correlation coeffi-
cients. || · || denotes 2-norm of a vector, and Eg = ‖h‖2 represents the captured
energy of the signal vector, whose estimation is discussed in Sect. 4.

3.2 Multiple Symbol Differential Detection

With the knowledge of zs, [8] adopts the hard-output decision based on
maximum-likelihood estimate of the symbols in s-th block jointly, and the MSDD
decision metric is

bs = arg max
b̄s∈{±1}M+1,b̄0=1

b̄sZsb̄H
s , (4)

where the diagonal weighting matrix Zs = diag (zs) and b̄s ∈ {±1}M+1 repre-
sents the differential candidate symbols.

4 Noncoherent Joint Detection and Channel Decoding
in Massive MIMO System

In order to further improve the system performance, we incorporate the channel
codes. The decoding of powerful channel codes, such as LDPC and Turbo code,
relies on soft-outputs of detector to realize iterative algorithm within channel
decoding [11]. Obviously, the hard-output decision metric in [8] is not suitable for
iterative decoding, so a new soft-output decision metric for the massive MIMO
system is needed to study. In this section, we firstly investigate a new soft-
output decision metric, and then propose the joint MSDD and channel decoding
framework which enables novel additional iterative processing as shown in Fig. 2.

4.1 The Soft-Output Decision Metric for SISO MSDD

In order to enable the iterative algorithm, we need to calculate the probability
distribution of correlation coefficient zk,l.

Theorem 1. For massive MIMO system with AcR, the correlation coefficient
zk,l can be approximated as a Gaussian random variable with the mean μ =
(
∏k

z=l+1 az) · Eg and the variance σ2 = 2Eg · σ2
n + NR · σ4

n:

p(zk,l|xs) =
1

πσ2
exp

[

− 1
σ2

|zk,l − μ|2
]

, (5)

where xs = [a(s−1)M+1,a(s−2)M+2, ..., asM ]T is the candidate data symbols in the
s-th block.
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Fig. 2. The block diagram of noncoherent joint MSDD and channel decoding in massive
MIMO system.

Proof. It is noted that the noise component nk,l in (3) contains two linear terms
and a noise-by-noise product term. Given the assumed channel model, clearly the
first and second term are Gaussian random variables, and the third one can be
decomposed into a sum of NR independent random variables. According to the
central limit theorem, the third noise term can be approximated as a Gaussian
random variable with zero mean and the variance NR · σ4

n. The approximation
is very good when NR is large in massive MIMO scenario. For DPSK, |bk| = 1.
The conditional variance of nk,l is

V ar [nk,l | h] = V ar
[
b∗
k · hHnl | h]

+ V ar
[
nH

k h·bl | h]

+V ar
[
nH

k nl | h]

= 2Eg · σ2
n + NR · σ4

n .

So V ar [zk,l | h] = V ar [nk,l | h] = 2Eg ·σ2
n +NR ·σ4

n, and the mean E [zk,l | h] =
Eg · (

∏k
z=l+1 az).

Given the observation zs, the SISO MSDD scheme aims to calculate the a
posteriori probability (APP) of data symbol ak:

p(ak|zs) ∝
∑

xs:∼ak

p(zs|xs)p(xs), (6)

for k = (s − 1)M + 1, ..., sM , s = 1, 2, ..., S, and the notation
∑

xs:∼ak
means the

summation over all data symbols in xs except ak.

4.2 Parameter Estimation

It can be concluded from (2) that the correlation coefficient depends on the data
symbols and the captured energy Eg. To obtain the knowledge of the parameter
Eg, our receiver employs an energy estimation method
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Êg =
1
J

S∑

s=1

sM∑

k=(s−1)M+1

k−1∑

l=(s−1)M

|zk,l| , (7)

where J is the number of the elements in the set of the correlation coefficients
{zs|s = 1, 2, ..., S}. In total J = SM(M + 1)/2. With the estimation Êg, we
substitute it into the signal model (2). We compare the performances of the
perfect Eg and the estimated Êg in our proposed algorithm in the simulation.

Fig. 3. The factor graph of joint MSDD and channel decoding with the block size M .
ak is the data symbol. d̂k is the decoding result of the information bit dk. The red
arrows denote extrinsic information from SISO MSDD to the channel decoder in the
i-th iteration, and the blue arrows denote the extrinsic information from the channel
decoder to SISO MSDD in the (i− 1)-th iteration. (Color figure online)

4.3 Joint MSDD and Channel Decoding Framework

In this subsection, we propose a SISO MSDD scheme using BP message passing
algorithm. For the calculation of (6), we apply a factor graph to represent the
probabilistic model of the system. Then the BP massages can pass on the factor
graph. To realize this, we factorize the global probability function p(zs|xs)p(xs)
in (6) into many small local functions. Firstly, the channel evidence information
function p(zs|xs), or channel transition probability, is obtained by the Gaussian
approximation on the discrete noise components according to the Theorem 1
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p(zs|xs) =
sM∏

l=(s−1)M+1

l−1∏

k=(s−1)M

p(zk,l|xs)

∝
sM∏

l=(s−1)M+1

l−1∏

k=(s−1)M

exp(− 1
σ2

|zk,l − (
k∏

z=l+1

az) · Êg|2). (8)

Then we factorize p(xs), though in coded system, data symbols can be seen
approximately independent by interleaving operation, so

p(xs) =
sM∏

k=(s−1)M+1

p(ak). (9)

Substituting (8), (9) into (6) leads to

γ(ak) ∝
∑

xs:∼ak

p(zs|xs)
∏

((lεIs)∩(l �=k))

δ(al). (10)

Is = {(s−1)M +1, ..., sM}, and γ(ak) and δ(al) denote the APP and the priori
information of ak, respectively.

According to (10), we can now calculate p(ak|zs) using a BP message passing
algorithm for all ak. Figure 3 shows the framework for joint MSDD and channel
decoding. The framework can be divided into two parts: the upper one in dash
line box illustrates the SISO MSDD processing in one of the blocks of the size M ;
the under one shows the processing of deinterleaver and channel decoder. The
massages exchanged between the MSDD and the channel decoding are known as
extrinsic information. The total length of data symbols of a transmission burst
are divided into S blocks, they are processed simultaneously.

The algorithm of joint MSDD and channel decoding is briefly described as
follows:

– Initialization: Since no extrinsic information from channel decoder, the priori
information δ(0)(al) is assumed equiprobable.

– Step1: For the s-th block in the i-th iteration as shown in the Fig. 3, with the
knowledge of p(zs|xs) and the priori information δ(i−1)(al), compute γ(i)(ak)
in the probability domain using (10). γ(i)(ak) is new APP of data symbol al,
which is considered as the extrinsic information from MSDD and sent into
channel decoder.

– Step 2 : The extrinsic information γ(i)(ak) run several rounds of within
the channel decoder, and the channel decoder updates δ(i−1)(al). Updated
δ(i−1)(al) is new priori information of data symbol al, which is treated as the
extrinsic information from channel decoder and sent into MSDD.

– Step 3 : Steps 1 and 2 are repeated after a certain number of iterations, and
the final channel decoding results of information bits are obtained as results.
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5 Simulation Results

The performance of the proposed scheme is validated by numerical simulations.
There is an uniform linear array with NR = 100 antennas at the receiver. Block
fading channel changes after a transmission burst of the length K = 300, and the
results is averaged over 10000 channel realizations. The signal-to-noise (SNR) is
defined as Es/σ2

n. Es is the transmitted energy per PSK symbol. The LDPC
code [13] with coding rate R = 1/2 and 10 iterations within the LDPC channel
decoder is applied.

Figure 4 presents the BER comparisons of the coded MSDD with different
number of iterations between detection and decoding. The block size is M = 3,
using estimated Êg. It is clear to see that the BER performance of coded MSDD
scheme outperforms the uncoded one with enormous gains by iterative processing
with powerful channel code. When the iteration between MSDD and channel
decoding is one, the SISO MSDD degrades to the soft-output MSDD since no
extrinsic information from LDPC decoding is sent into MSDD, which is the case
of MSDD in [8] that we modify with channel encoding. In addition, it is also
shown that six iterations brings about 0.5 dB gain compared to single iteration.
The gain benefits from that more accurate priori information of data symbols
is sent into MSDD and more accurate posteriori information of data symbols is
sent into decoder, at the cost of extra iterations between SISO MSDD and SISO

SNR (dB) 
8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6

B
E

R

10-6

10-5

10-4

10-3

10-2

10-1

100

Uncoded MSDD

in [8].
Joint Det/Dec
1st iteration.
Coded Soft-output
MSDD
2nd iteration
3rd iteration
4th iteration
5th iteration
6th iteration

Fig. 4. BER comparisons of the coded MSDD with different number of iterations
between detection and decoding. Block size M = 3.
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Fig. 5. The BER comparisons of the coded MSDD with different block size.

channel decoder. Moreover, the BER result of five iterations is near to that of six
iterations, which denotes six iterations between SISO MSDD and SISO LDPC
decoder can reach converged error performance.

Figure 5 depicts the BER comparisons of the coded MSDD with different
block size. We can observe that when the block size increases, the BER perfor-
mance is also improved (1.1, 2.3, 3.5 dB at the BER of 10−6 for M = 2, 3, 5).
It also shows the impact of the estimated Êg on the BER performance. One
can see that the estimated Êg almost has the same performance as that of the
perfect Eg, which inspires us that we proposed straightforward way of energy
estimation is sufficient for the implementation of our algorithm.

6 Conclusions

In this paper, we propose a noncoherent joint MSDD and channel decoding
framework in M-MIMO system with BP message passing algorithm. We have
integrated BP for SISO MSDD and BP for channel decoding under the mas-
sage passing framework, which enables MSDD for computing the posteriori of
the data symbols with updated information from channel decoder. Simulations
indicate that the proposed joint detection and decoding scheme has significantly
improved the performance over the hard-output and the soft-output MSDD,
with the price of extra iterations between detector and channel decoder. A non-
coherent joint MSDD and channel decoding framework adapted for multi-user
in massive MIMO system shall be for future work.
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