
An Optimization of DBN/GPU Speech Recognition
on Wireless Network Applications

Weipeng Jing1,2(✉), Tao Jiang1, and Yaqiu Liu1

1 College of Information and Computer Engineering,
Northeast Forestry University, Harbin, China

weipeng.jing@outlook.com, taojiang920619@outlook.com,
yaqiuLiu@gmail.com

2 Guangdong Provincial Key Laboratory of Petrochemical
Equipment Fault Diagnosis, Maoming, China

Abstract. With the development of wireless networks and mobile computing,
using speech recognition with wireless networks in mobile terminals to process
data has become a new trend in mobile computing and achieved great success.
Therefore, how to improve the speed of training speech recognition is still a
problem worth studying. Using GPU to accelerate the training of speech recog‐
nition based on Deep Belief Network (DBN) has achieved great success, but there
exits some problems. Aiming the problems that single GPU can not store huge
parameters of DBM at one time and the unreasonable usage of GPU’s memory
model, we propose a new method in this paper. We divide the weight matrix into
blocks, take the connections between visible units and hidden unit as threads and
store the weight matrix into shared memory of GPU, establishing a reasonable
memory model. Experimental results show that the optimized GPU implemen‐
tation achieves 223 times and 1.5 times acceleration compared to single CPU and
single GPU in Kaldi respectively, which demonstrate that our method can
improve the DBN’s training speed in mobile computing without GPU memory
limitation.

Keywords: Wireless networks · Speech recognition · DBN · GPU
Parallel computation · Mobile computing

1 Introduction

With the development of wireless networks and mobile network, 4G/5G mobile commu‐
nications have got more and more attention, Internet of things and mobile computing [1]
have also achieved great success in practical applications. Under these circumstances,
it has been a trend that the speech signals are taken as inputting information, processed
and transferred to others in mobile terminals’ applications. So how to improve the
training speed of speech recognition in mobile terminals with wireless networks has
become one of important research topics in mobile computing. The Gauss Mixture
Model and Hidden Markov Model (GMM-HMM) is used to make acoustic models in
traditional speech recognition methods.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
M. Huang et al. (Eds.): WICON 2016, LNICST 214, pp. 189–196, 2018.
https://doi.org/10.1007/978-3-319-72998-5_20



However, this model is a typical shallow learning structure, and its performance is
limited under the massive data. Hinton [2] proposes the “depth learning” which points
the training of the depth neural network could be completed by “layer-by-layer initial‐
ization”, which is widely used in the field of speech recognition. Deep Belief Network
(DBN), as a typical model of deep learning, can be trained quickly, so it is widely used
in speech recognition and has achieved great success [3]. However the continuous
increments of speech input signals in mobile terminals lead to spending a large amount
of time on DBN’s training. Therefore, how to improve the speed of DBN training under
the massive data is an urgent problem that needs solving.

GPU has more powerful computing ability than CPU and has been applied into
mobile terminals for mobile computing. Paprotski accelerates the speed of RBM’s
training by Compute Unified Device Architecture (CUDA) and by speeding up RBM’s
training to further accelerate DBN model’s training speed has become a new trend [4].
The RBM is trained by function library of CuBLAS to accelerate in [5], but it is too
versatile. Special kernels function is written in [6] to make full use of GPU computing
resources, but its implementation is too complex and is not stably. Moreover, there are
a large number of parameters in RBM model, which makes it be likely to occur the
phenomenon that the single GPU can’t store all the parameters one-time.

In summary, considering the problems that single GPU can’t store all the parameters
one-time and inefficient usage of memory model, in this paper, we propose a new GPU
implementation of DBN to accelerate the speed of speech recognition with wireless
networks in which we divide the weight matrix into many sub-weight matrixes, select
appropriate GPU memory and further establish a reasonable memory model to store the
trained parameters.

2 DBN Training

A DBN is a probability generation model, which is composed of several Restricted
Boltzmann Machine (RBM) layers and a layer of Backpropagation (BP) neural network.
The training process of DBN model in speech recognition mainly contains layer-wise
greedy unsupervised learning as pre-training and supervised fine-tuning. The advantage
of pre-training lies in that it can provide an effective initial training value to the DBN
model; the significance of fine-tuning is that it can adjust the whole parameters of DBN
which are calculated by pre-training, and gets the optimal value of DBN’s parameters.

2.1 Pre-training of DBN

We use the Contrastive Divergence (CD) algorithm [7] to make unsupervised training
for each layer of RBM to make sure that the training speech data’s feature vectors are
mapped to the different feature spaces.

A RBM is an energy-based generative model that consists of two layers: a layer of
binary visible units and a layer of binary hidden units, with symmetrical connections.
Any unit in one layer is connected to all units in the other layer and has no connection
with units in the same layer. Since speech observations are sequential and real-valued,

190 W. Jing et al.



we consider RBM’s visible units obey Gaussian distribution and the hidden units obey
Bernoulli distribution. Thus the energy of Gaussian-Bernoulli configuration is given by
Eq. 1:

E(v, h) =

m∑

i=1

(vi − ai)
2

2
−

n∑

i=1

hjbj −

m∑

i=1

n∑

j=1

Wijvihj (1)

where vi ∈ Rm represents the initial input value of speech data’s features, hj ∈ Rn denotes
the output value of speech data’s extracted features. 𝜃 = {Wij, ai, bj} is the parameters
of the RBM. Considering RBM’s special structure, the probability of hj given vi becomes

P
(
hj = 1|v

)
= sigm

(
m∑

i=1

Wijvi + bj

)

(2)

where sigm() is the sigmoid function. Similarly given a specific hidden state hj, the
probability of vi given hj is:

P
(
vi = 1|h

)
= sigm

(
n∑

j=1

Wijhj + ai

)

(3)

In order to obtain the value of RBM’s 𝜃, we could maximize the training data’s
likelihood function. So we use a much faster method: CD-k algorithm (k = 1) [7]. Here
are the following update rules:

ΔWij = 𝜀

(
< v

(0)
i

, h
(0)
j

>,< v
(k)

i
, h

(k)

j
>

)
(4)

Δai = 𝜀
(
< v

(0)
i

>,< v
(k)

i
>
)

(5)

Δbj = 𝜀

(
< h

(0)
j

>,< h
(k)

j
>

)
(6)

where 𝜀 is learning rate, v(0)
i

 represents the initial trained speech data’s features, h(0)
j

denotes the trained speech data’s extracted features. v(k)
i

 and h(k)

j
 are the reconstructed

trained speech data’s features and reconstructed trained speech data’s extracted features
respectively which are obtained after k iterations of Gibbs sampling.

2.2 Fine-Tuning of DBN

We can get the initial value of the entire DBN model after the pre-training is completed.
After the pre-training, we can do the progress of fine-tuning using the trained speech
data in which each frame is labeled with a target class label. We divide the fine-tuning
into two steps. Firstly, the speech data’s features extracted from the last layer of RBM
are taken as the input values of the BP neural network, and then the output values are

An Optimization of DBN/GPU Speech Recognition 191



classified by the softmax function. Secondly, use the cross entropy [8] as the loss func‐
tion and do the calculations with error Backpropagation algorithm, adjusting the param‐
eters of the whole DBN model.

Because it needs a long time for BP algorithm to complete an update of 𝜃, we choose
SGD algorithm. After completing the speech features’ classification of a mini-batch, we
update the 𝜃 directly using the calculated error to accelerate the speed of training DBN.

3 GPU Implementation

GPU has successfully applied in to speech recognition based on DBN. However, there
are still some problems in using GPU. For example, existing methods usually ignore
that the number of RBM’s parameters is so large that a single GPU can not store them
at one-time. The different type of memory in GPU has different access speed. Therefore,
we implement the optimization of RBM’s training using single GPU based on the
memory model with sliced weight matrix that are from two aspects. Firstly, divide the
weight matrix into sub-weight matrixes. Secondly, make full use of shared memory of
GPU to establish reasonable memory model.

3.1 Division of Weight Matrix

We can improve the training speed of RBM by training the data with size of l (the number
of mini-batch [9]), but there still exists a problem that the large size of l will hurt the
overall efficiency of learning. So in the training process, the size of l we choose is much
smaller than the m, n which are the dimensions of trained speech data’s features vi ∈ Rm×l

and speech data’s extracted features hj ∈ Rn×l respectively. vi, bias ai, hj and bias bj are
small so that they can store in the GPU device memory. However, the weight matrix is
so large duo to interconnections between any two units, it is likely to occur the phenom‐
enon the weight matrix can not store in GPU device at one-time. So we divided it into
many sub-weight matrixes Wi ∈ Rm′×n where m′

<< m such that every Wi could be stored
in the GPU device memory.

3.2 Memory Model Based on Shared Memory with Minimal Transfer

We copy the DBN model’s parameters trained from CPU to GPU after having divided
the weight matrix into sub-weight matrixes. According Eqs. 2 and 3, we calculate h0

j
 and

vk
i
. When calculating h0

j
 with GPU, in order to hide the global memory latency, we need

to use threads at a much finer granularity to take full use of the GPU computing resources.
Hence, we take the connection Wij ∈ Wi as the smallest unit of computation which is
called thread performing a function that multiples the vi by its weight. We can make
every block represent a unit by this way. In other words, every block can be taken as a
determined element of the speech data’s extracted features and we can store the Wi in
the shared memory to make full use of the shared memory having faster access speed

192 W. Jing et al.



to compute every thread’s value, and sum up them with reduction process. Then, we

calculate h0
j
.

As for the calculation of vk
i
, we also divide the weight matrix into Wi and transferring

Wi one by one on demand. However, the transfer of Wi would cost lots of time, we adopt
a method that avoids the undesirable memory transfer of Wi. Because the calculation of
vk

i
 and h0

j
 use the same Wi, we will calculate the vk

i
 immediately after the calculation the

vk
i
. The order that Wi stored in the shared memory (row-major or column) affects the

calculation of h0
j
 and vk

i
.

We use the same method to get the calculation of hk
j
. After hk

j
 is finished, we also

update Wi immediately as the updating Wi needs the corresponding vk
i
 and hk

j
 according

Eq. 4. Also we know that the updating of Wi needs hk
j
, h0

j
, vk

i
, vi matrices, if we adopt the

same method above, the updating of Wi could not be done in a coalesced manner and
many blocks are trying to access to the same memory address at the same time, which
could potentially lead to memory conflicts. So we propose a new way that each block
processes several adjacent connections that require, to some degree, access the same
elements of hk

j
, h0

j
, vk

i
, vi matrices to update Wi. We can copy the parameters for updating

Wi to the shared memory in each block for each sample, so that all the threads in one
block could access them in a coalesced manner to update Wi without memory conflicts.

4 Experimental Results and Analysis

We use TIMIT corpus in this paper. In the process of training, we use the method of
early-stop [7]. The input data are the 440-dimensional speech features which are spliced
by 40-dimensional fMLLR features. In the pre-training of DBN, we refer to the settings
of the instance of TIMIT in Kaldi. We use the Intel(R) Xeon(R) CPU E5-2620 v2 @
2.10 GHz with 128G memory, NVIDIA Teskla K20m with 5G device memory and
speech recognition toolkit Kaldi in our experimental environment.

4.1 Training Time Spent on RBM

We did experiments to compare the training time spent on one iteration of RBM with
the 440 visible units and different hidden units in three different ways. (1) the optimized
GPU implementation with 1/4 memory usage and four streams (2) the method used with
single GPU in [10] (3) the implementation of Kaldi with single GPU. In the following
experiments the optimized GPU implementation is like (1). Figure 1 describes the
results.

We can learn that the number of hidden units becomes larger, the cost time becomes
much from Fig. 1. At first, the first way spends the most time because it need more time
to exchange the weight matrix and streams synchronization. But with the increment of
the number of hidden units, the first way costs less time than the others. The reason is
that the first way uses reasonable memory model and streams process. The first way
achieves acceleration with a maximum time of 1.7 than the third way when the number
of hidden units is 213.

An Optimization of DBN/GPU Speech Recognition 193



4.2 Training Time and Word Error Rate Spent on DBN

We did experiments to compare the time spent on training DBN model using five
different ways. (1) the implementation of Kaldi with single CPU (2) single
GPU + CUDAC (3) the implementation of Kaldi with single GPU (4) the optimized
GPU implementation. Table 1 lists the results.

Table 1. Training DBN’s time

Model Time/h
Kaldi with single CPU 372
Single GPU + CUDAC 3
Kaldi with single GPU 2.5
Optimized GPU implementation 1.67

From Table 1, the optimized GPU implementation could greatly reduce the time
spent on training DBN model. It obtains accelerations of 1.5 times and 223 times than
that using Kaldi with single GPU and single CPU respectively. It confirms that the
optimized GPU implementation can achieve a better acceleration effect.

The word right rate is the factor that we must consider. So we did experiments to
compare the DBN’s word error rate with three different ways. (1) the implementation
of Kaldi with single CPU (2) the implementation of Kaldi with single GPU (3) the
optimized GPU implementation. Here is the word error rate of DBN model’s training.

From Table 2, we know that the optimized GPU implementation could obtain better
performance with only 5% performance loss comparing the Kaldi with single CPU. This
is acceptable for us. It proves that the optimized GPU implementation could accelerate
the training speed of DBN model, and remain a better word right rate.

Fig. 1. One iteration of RBM’s training time

194 W. Jing et al.



Table 2. Training DBN’s word error rate

Model Error rate
Kaldi with single CPU 18.6%
Kaldi with single GPU 18.8%
Optimized GPU implementation 19.5%

5 Conclusion

Applying the DBN model into the combination of speech recognition and wireless
networks has achieved great success in mobile computing. In this paper, aiming at the
problems huge parameters of DBN and unreasonable usage of GPU’s memory model,
we propose the memory model based on sliced weight matrix that could train large-scale
DBN without parameters restriction and make full use of GPU’s computing resources,
making the GPU in mobile terminals to process more data with wireless networks.
Results show that the optimized GPU implementation of DBN in mobile terminals for
mobile computing not only can accelerate its training speed with large parameters, but
also ensure the accuracy of the results.

Acknowledgements. The work described in this paper is supported by Guangdong Provincial
Key Laboratory of Petrochemical Equipment Fault Diagnosis, Guangdong University of
Petrochemical Technology (GDUPTKLAB201502) and Special Fund for Forest Scientific
Research in the Public Welfare (201504307).

References

1. Chen, W., Dong, S., et al.: Research on man-machine interaction of handheld mobile
computing. Comput. Appl. 25(10), 2219–2223 (2005)

2. Hinton, G.E., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks.
Science 313(5786), 504–507 (2006)

3. Seide, F., Li, G., Yu, D.: Conversational speech transcription using context-dependent deep
neural networks. In: 12th Conference of the International Speech Communication
Association, Florence, pp. 437–440 (2011)

4. Ly, D.L., Paprotski, V.: Neural networks on GPUs: restricted Boltzmann machines. In: 9th
International Conference on Machine Learning and Applications, Washington, pp. 307–312
(2010)

5. Raina, R., Madhavan, A., Ng, A.Y.: Large-scale deep unsupervised learning using graphics
processors. In: 26th International Conference on Machine Learning, Montreal, pp. 873–880
(2009)

6. Lopes, N., Ribeiro, B.: Towards adaptive learning with improved convergence of deep belief
networks on graphics processing units. Pattern Recogn. 47(1), 114–127 (2014)

7. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural
Comput. 14(8), 1771–1800 (2002)

8. Li, X., Li, C.: Alternating update layers for DBN-DNN fast training method. Appl. Res.
Comput. 33(3), 843–847 (2016)

An Optimization of DBN/GPU Speech Recognition 195



9. Zhu, Y., Zhang, Y., Pan, Y.: Large-scale restricted Boltzmann machines on single GPU. In:
2013 IEEE International Conference on Big Data, Santa Clara, pp. 169–174 (2013)

10. Xue, S., Song, Y., et al.: Fast training algorithm for deep neural network using multiple GPUs.
J. Tsinghua Univ. (Sci. & Tech.) 53(6), 745–748 (2013)

196 W. Jing et al.


	An Optimization of DBN/GPU Speech Recognition on Wireless Network Applications
	Abstract
	1 Introduction
	2 DBN Training
	2.1 Pre-training of DBN
	2.2 Fine-Tuning of DBN

	3 GPU Implementation
	3.1 Division of Weight Matrix
	3.2 Memory Model Based on Shared Memory with Minimal Transfer

	4 Experimental Results and Analysis
	4.1 Training Time Spent on RBM
	4.2 Training Time and Word Error Rate Spent on DBN

	5 Conclusion
	Acknowledgements
	References


