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Abstract. Modulated Wideband Converter (MWC) provides a sub-Nyquist
sampling approach for wideband spectrum sensing. In previous studies, recon-
struction algorithm, OMP (Orthogonal Matching Pursuit) is used in the CTF
(continuous-to-finite) block of MWC for frequency support recovery. However,
the percentage of correct support recovery is low at low SNR (Signal Noise
Ratio) using OMP algorithm. In this paper, the reconstruction algorithm of
CoSaMP (Compressive Sampling Matching Pursuit) is investigated to be used in
the CTF block instead of OMP. Simulation results demonstrate that such a
proposal can achieve higher percentage of correct support recovery than with
OMP algorithm.
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1 Introduction

In the field of wireless communications, spectrum resources become increasingly
scarce with the emerged new services and growing number of users. Nevertheless,
regulatory bodies found that allotted radio frequency spectrum can be inefficiently
utilized. As a solution, cognitive radio (CR) technique can exploit the unused fre-
quency regions on an opportunistic basis by using spectrum sensing to identify
available spectrum holes [1, 2]. Hence, quick and efficient spectrum sensing is an
essential component of CR functionality.

CR typically operates in a wideband environment, and the Nyquist sampling rate
can be prohibitively large. When the band positions are unknown, it is a more chal-
lenging problem because standard demodulation cannot be used. The modulated
wideband converter (MWC) provides a sub-Nyquist sampling approach for wideband
spectrum sensing [3, 4]. It can blindly sample multiband analog signals at a low
sub-Nyquist rate. The MWC first multiplies the analog signal by a bank of periodic
waveforms. Then the product is lowpass filtered and sampled uniformly at a low rate,
which is orders of magnitude smaller than the Nyquist rate. The spectral support can be
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recovered by using sparse recovery algorithm of compressed sensing (CS) [5], which is
performed in the CTF (continuous-to-finite) block in the MWC architecture [6].
The CTF constructs a frame from the input samples, then it solves a finite dimensional
sparse representation problem, from which it identifies the indices of the active spec-
trum slices, namely those containing signal energy.

In the previous study of MWC, Orthogonal Matching Pursuit (OMP) algorithm is
used in the CTF block [7–9]. However, the percentage of correct support recovery is
low at low SNR (Signal Noise Ratio). In this paper, CoSaMP (Compressive Sampling
Matching Pursuit) algorithm [10] is investigated to be used in the CTF block instead of
OMP algorithm. Simulation results demonstrate that such a proposal can achieve higher
percentage of correct support recovery than with OMP algorithm.

This paper is organized as follows. In Sect. 2, we describe the MWC architecture
for wideband spectrum sensing. Section 3 describes sparse signal recovery algorithms,
namely OMP algorithm and CoSaMP algorithm, which are used in the CTF block.
Section 4 presents and discusses the simulation results of MWC with OMP algorithm
and CoSaMP algorithm. Section 5 concludes this paper.

2 MWC Architecture for Wideband Spectrum Sensing

The MWC architecture for wideband spectrum sensing is shown in Fig. 1. The MWC
performs sub-Nyquist sampling to obtain input samples, and the CTF block conducts
frequency support recovery to identify spectrum holes.

2.1 MWC

The MWC can treat multiband signals when knowledge of the carrier frequencies is
unknown. The only assumption is that the spectrum is concentrated on N frequency
intervals with individual widths not exceeding B. The sampling rate is proportional to
the effective spectrum occupation NB rather than fNYQ which represents Nyquist rate.
Typically, the spectrum is underutilized so that NB � fNYQ. For the purpose of spec-
trum sensing, the goal of MWC is to detect the inactive support. Other tasks such as
reconstruction and processing of the primary transmissions are not required in the CR
settings.

Fig. 1. MWC architecture for wideband spectrum sensing
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The MWC consists of a front end of m channels. In the ith channel, the input signal
x tð Þ is multiplied by a periodic mixing waveform pi tð Þ with period Tp, low-pass filtered
by h tð Þ, and then sampled at rate 1=Ts. The basic MWC configuration has
fp ¼ 1

�
Tp �B; Tp ¼ Ts; m� 4N. Such a parameter choice results in a sampling rate,

mfs � 4NB, which, in general, is far below fNYQ.
The mixing sequence pi tð Þ is periodic, and it has a Fourier expansion

pi tð Þ ¼
X1

l¼�1
cile

j2pfplt ð1Þ

for some coefficients cil .
Denoting by zl½n� the sequence that would have been obtained if the signal was

mixed by a pure sinusoid ej2pfplt and low-pass filtered. This sequence corresponds to
uniform samples at rate fp of a section of x tð Þ, conceptually obtained by bandpass
filtering an fp-width interval around lfp and demodulating to the origin. Since the
system is linear, modulating by pi tð Þ and low-pass filtering is equivalent to summing
the weighted combinations of all the sequences zl½n�

yi½n� ¼
XL

l¼�L

cilzl½n� ð2Þ

where the sum limits �L� l� L represent the range of coefficients cil, with nonneg-
ligible amplitudes. It follows that the number of spectrum intervals that are aliased to
the origin is M ¼ 2Lþ 1.

Mixing by periodic waveforms aliases the spectrum to baseband, and each fre-
quency interval of width fp ¼ 1

�
Tp receives a different weight. The energy of the

various spectral intervals is overlayed at baseband. Nonetheless, the fact that only a
small portion of the wideband spectrum is occupied, together with the different weights
in the different channels, permits the recovery of x tð Þ.

(2) can be rewritten as a linear system

y½n� ¼ Cz½n� ð3Þ

where the vector y[n] collects the measurements at t = nTs. The matrix C consists of
the coefficients cil , and zl½n� consists of the values of zl½n� arranged in vector form. From
(3) and the definition of zl½n�, it follows that at most 2 N sequences, zl½n� are active,
namely contain signal energy.

2.2 CTF Block

The CTF block constructs a finite-dimensional frame (or basis) from the samples, from
which a small-size optimization problem is formulated. The solution of that problem
indicates those spectrum slices that contain signal energy. The CTF outputs an index
set S of active slices.
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The spectrum sensing functionality is to finding the index set

S ¼ l zl½n� 6¼ 0jf g ð4Þ

which reveals the spectrum support of x tð Þ at a resolution of fp Hz.
Detecting S by inverting C in (3) is not possible, since the m	M matrix C is

underdetermined; the MWC uses m � M to reduce the sampling rate below Nyquist
rate. Underdetermined systems have in general infinitely many solutions. Nonetheless,
under the parameter choice, and additional mild conditions on the waveforms pi tð Þ, a
sparse z[n] with at most 2 N nonzero entries is unique and can be recovered in poly-
nomial time by relying on results in the field of compressed sensing.

Solving for a sparse vector solution of an underdetermined system of equations has
been widely studied in the literature of compressed sensing. Recovery of z[n] using any
of the existing sparse recovery techniques is inefficient, since the sparsest solution z[n],
even if obtained by a polynomial-time CS technique, is computed independently for
every n. Instead, the CTF method exploits the fact that the bands occupy continuous
spectral intervals. This analog continuity boils down to z[n] having a common nonzero
location set S over time. To take advantage of this joint sparsity, the CTF builds a frame
from the measurements using

y½n� !Frame construct
Q ¼ y½n�yH ½n� !Decompose

Q ¼ VVH : ð5Þ

The active spectrum slices are detected from the sparse solution of the following
finite dimensional system

V ¼ CU: ð6Þ

It is proven in [6] that (6) has a unique solution matrix U with minimal number of
nonidentically zero rows, and that the locations of these rows coincide with the support
set S of x tð Þ. The CTF effectively locates the signal energy at a spectral resolution of fp.
From that support set, the CR device can decide the spectrum holes to be used as

Spectrum holes ¼
[

l62S
½lfp � fp

2
; lfp þ fp

2
�: ð7Þ

In previous studies, OMP algorithm is used in the CTF block for frequency support
recovery. However, the percentage of correct support recovery is low at low SNR using
OMP algorithm. In this paper, CoSaMP algorithm is investigated to be used in the CTF
block instead of OMP algorithm. In the sequel, we demonstrate by simulation that such
a proposal can achieve higher percentage of correct support recovery than with OMP
algorithm.
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3 Sparse Signal Reconstruction Algorithm

The sparse signal reconstruction algorithms, OMP and CoSaMP, are presented as
follows.

3.1 OMP Algorithm

MP (Matching Pursuit) is a greedy iterative algorithm for approximately solving the
original l0-norm problem for sparse signal recovery. MP works by finding a basis
vector in the dictionary that maximizes the correlation with the residual, and then
recomputing the residual and coefficients by projecting the residual on all atoms in the
dictionary using existing coefficients. The main difference of OMP from MP is that
after every step, all the coefficients extracted are updated by computing the orthogonal
projection of the signal onto the set of atoms selected so far. The algorithm maintains
an active set of atoms already picked, and adds a new atom at each iteration. The
residual is projected on to a linear combination of all atoms in the active set, so that an
orthogonal updated residual is obtained. The pseudo code of the OMP algorithm is
given as follows.

Input:

(1) M 	 N dimensional sensing matrix A ¼ UW
(2) N 	 1 dimensional measurement vector y
(3) Sparsity of signal K

Output:

(1) Estimation of signal sparse representation coefficient h
^

(2) N 	 1 dimensional residual rK ¼ y� AK ĥK

In the following processes, rt is the residual, t is the number of iteration, £ is the
empty set, Kt is the column index set at tth iteration, kt is the column index at the tth
iteration, aj is the jth column of the matrix A, At is the column set of M 	 t dimensional
matrix of matrix A, which is chosen according to index Kt; ht is a t 	 1 dimensional
column vector; the symbol [ refers to the union operation of sets; �; �h i refers to the
inner product of vectors.

(1) Initializing ro ¼ y, Ko ¼ £, Ao ¼ £, t ¼ 1;
(2) Finding the index kt, which satisfies kt ¼ arg max

j¼1;2;���;N
rt�1; aj
� ��� ��;

(3) Making Kt ¼ Kt�1 [ ktf g, At ¼ At�1 [ ak;
(4) Calculating the least square solution of y ¼ At ht : ĥt ¼ argmin

ht
y� At htk k ¼

AT
t At

� ��1
AT
t y;

(5) Updating the residual rt ¼ y� At ĥt ¼ y� At AT
t At

� ��1
AT
t y;

(6) t ¼ tþ 1, if t � K, the program will turn back to the second step to continue the
iteration, otherwise the iteration will be stopped and the program will run the
seventh step;
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(7) The h
^
from reconstruction has nonzero terms in Kt, and their values are ĥt which

are obtained from the last iteration respectively.

3.2 CoSaMP Algorithm

CoSaMP algorithm is another reconstruction algorithm which is proposed by Needell
and Tropp [10]. CoSaMP algorithm chooses multiple atoms during each iteration rather
than only one atom in OMP algorithm. In the selection criteria, the atoms in every
iteration chosen by OMP algorithm are saved forever, whereas the atoms in every
iteration chosen by CoSaMP algorithm may be discarded in next iteration. CoSaMP
algorithm is better to approximate a compressible signal from noisy samples than OMP
algorithm. The pseudo code of the CoSaMP algorithm is given as follows.

Input:

(1) M 	 N dimensional sensing matrix A ¼ UW
(2) N 	 1 dimensional measurement vector y
(3) Sparsity of signal K

Output:

(1) Estimation of signal sparse representation coefficient h
^

(2) N 	 1 dimensional residual rS ¼ y� AS ĥS

In the following processes, rt is the residual, t is the number of iteration, £ is the
empty set, J0 is the column index in each iteration, Kt is the column index set at tth
iteration, aj is the jth column of the matrix A, At is the column set of matrix A which is
chosen according to index Kt, ht is a Lt 	1 column vector; abs �½ � is calculating the
module value namely absolute value.

(1) Initializing ro ¼ y, Ko ¼ £, Ao ¼ £, t ¼ 1;
(2) Calculating u ¼ abs AT rt�1½ � (that is calculating rt�1; aj

� �
, 1� j�N), choosing

the 2K maximum in u, forming the set J0 (column ordinal set) with the column
ordinals j of A that correspond to these 2K maximum;

(3) Making Kt ¼ Kt�1 [ J0, At ¼ At�1 [ aj (for all j 2 J0);

(4) Calculating the least square solution of y ¼ At ht : ĥt ¼ argmin
ht

y� At htk k ¼

AT
t At

� ��1
AT
t y;

(5) Choosing the K largest absolute values of ĥt, and they are denoted as ĥtK . The K
columns corresponding to At are denoted as AtK and the column ordinals corre-
sponding to A are denoted as KtK , then updating the set Kt ¼ KtK ;

(6) Updating the residual rt ¼ y� AtK ĥtK ¼ y� AtK AT
tK AtK

� ��1
AT
tK y;

(7) t ¼ tþ 1, if t� S, the program will turn back to the second step to continue the
iteration, if t[ S or the residual rt ¼ 0, the iteration will be stopped and the
program will run the eighth step;

(8) The ĥ from reconstruction has nonzero terms in KtK , and their values are ĥtK
which are obtained from the last iteration respectively.
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4 Simulation and Discussion

In the simulation, the overall spectrum sensing range is 20 MHz. There are 2 active
frequency bands (2N ¼ 4). On each active frequency band, binary phase shift keying
(BPSK) signal with Sinc waveforms is generated as the transmitted signal with
bandwidth B ¼ 2 MHz, and the signals on two frequency bands are modulated with
frequency carriers 5 MHz and 15 MHz respectively. The signal energy is normalized to
1 at each band. The Nyquist rate is fNYQ ¼ 40 MHz. The sampling rate fs equals the
aliasing rate fp whose value is 2:105264 MHz. The signals are sent over AWGN
channel before reaching the MWC sensing device. The number of MWC channels is
m ¼ 20.

Figure 2 shows the time-domain signal waveform and PSD (Power Spectrum
Density) of original signal, signal with noise and reconstructed signal when SNR is
30 dB.

Figure 3 shows the time-domain signal waveform and PSD (Power Spectrum
Density) of original signal, signal with noise and reconstructed signal when SNR is
5 dB.

Figure 4 shows normalized residual of reconstructed signal versus SNR using OMP
and CoSaMP algorithms. The normalized residual is defined as follows

residual ¼ y� solution ð8Þ

normalized residual ¼ resnorm=norm solutionð Þ ð9Þ
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Fig. 2. Signal waveform and PSD of original signal, signal with noise, and reconstructed signal
when SNR = 30 dB
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The residual can be calculated by (8), where y is the observed signal; the solution is

At ĥt in the fifth step of OMP algorithm or AtK ĥtK in the sixth step of CoSaMP
algorithm. The normalized residual is given in (9), where resnorm is the norm of
residual.

It can be seen from Fig. 4 that the normalized residual of the reconstructed signal
with CoSaMP algorithm is lower than that with OMP algorithm, though there is no
significant difference.
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Fig. 3. Signal waveform and PSD of original signal, signal with noise, and reconstructed signal
when SNR = 5 dB
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Fig. 4. Normalized residual of reconstructed signal at different SNRs
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Figure 5 shows that the percentage of correct support recovery at different SNRs
using OMP and CoSaMP algorithms. It can be seen from Fig. 5 that the percentage of
correct support recovery with CoSaMP algorithm is much higher than that with OMP
algorithm at low SNR. Particularly, when SNR = 5 dB, the percentage of correct
support recovery with CoSaMP algorithm is 55%. On the other hand, the percentage of
correct support recovery with OMP algorithm is only 20% at the same SNR. Moreover,
exact support recovery can be achieved when SNR is larger than 10 dB by using
CoSaMP algorithm; OMP algorithm cannot reach such a performance until SNR is
larger than 20 dB.

In addition, CoSaMP algorithm O mnð Þð Þ has reduced complexity than OMP
algorithm O kmnð Þð Þ [10]. The notation k refers to the sparsity level, the notation m
refers to the number of measurements and the notation n refers to the signal length.
Consequently, CoSaMP algorithm can be a better algorithm to be used in the CTF
block of the system architecture for multiband spectrum sensing for support recovery
than OMP algorithm.

5 Conclusion

In this paper, MWC with CoSaMP reconstruction algorithm for support recovery is
proposed for multiband spectrum sensing. Our simulation results demonstrated that the
method with CoSaMP algorithm can achieve higher percentage of correct support
recovery than OMP algorithm, especially at low SNR regime. We also show that lower
normalized residual can be achieved with CoSaMP algorithm than with OMP algo-
rithm. In addition, CoSaMP algorithm has less complexity than OMP algorithm. These
benefits make CoSaMP algorithm a better candidate to be used with MWC for wide-
band spectrum sensing.
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Fig. 5. Percentage of correct support recovery at different SNRs
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