A Software Architecture for Centralized
Management of Structured Documents
in a Cooperative Editing Workflow

Milliam Maxime Zekeng Ndadji®™ and Maurice Tchoupé Tchend;ji™=

Department of Mathematics and Computer Science, University of Dschang,
PO Box 67, Dschang, Cameroon
{ndadji.maxime,maurice.tchoupe}@univ-dschang.org,
ndadjimaxime@yahoo.fr,ttchoupe@yahoo.fr

Abstract. Nowadays, electronic documents are widely used as media of
exchange between actors involved in a given business process. Generally,
their contents provide information on both what has already been done
on this procedure and what remains to be done and by whom it should
be done. Badouel and Tchoupé proposed a modelling of the life cycle of
such documents through an administrative workflow in which, each of the
participants manipulates a partial replica of the document representing
at some point, the current state of the process execution; the overall state
of the process being obtained by merging different partial replicas. This
paper presents a modular software architecture for the implementation
and management of such workflow systems.

Keywords: Software architecture - Structured documents
Cooperative editing workflow - Workflows management system
Cross fertilization

1 Introduction

Workflow technology, emerged in the 80s, knows a quickly growing in the indus-
try of computer-aided production. This interest is due to the ability of this one,
to allow companies to reduce costs of their productions, to quickly and easily
develop new products and services, and therefore, to be competitive [4]. Work-
flow technology provides methods and tools (notations, management systems, ...)
for the specification, automation, optimization and monitoring of business
processes [4].

A complex workflow system may be composed of several subsystems (sites)
distributed across a network; these coordinating themselves through a workflow
management system that can use for this purpose, documents (artifacts) issued
from the various subsystems. Badouel and Tchoupé [5] have theorized a business
process running approach in which, the state of the process at some point is
represented by a document, and stakeholders from subsystems work by editing
© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

C. M. F. Kebe et al. (Eds.): InterSol 2017/CNRIA 2017, LNICST 204, pp. 279-291, 2018.
https://doi.org/10.1007/978-3-319-72965-7_26

280 M. M. Zekeng Ndadji and M. Tchoupé Tchendji

and exchanging (partial) replicas of documents representing their perceptions
of the workflow at any given time. Therefore, each subsystem (actor) has a
partial view of the overall state of the workflow at any given time, and the
current (global) workflow state is given by the merging of different artifacts
(documents) from the various subsystems. In their model, collaborations between
actors can be divided into three sequential phases (Fig. 1): the distribution phase
where global artifact (a structured document) is replicated (partially) to each
subsystem (site), the edition phase in which local processes of subsystems are
executed, inducing an update of the local replica of the global artifact, and finally,
the synchronization phase in which the various local artifacts updated are merged
into a global artifact. Thus presented, the execution of such a workflow is similar
to the cooperative editing of a structured document. That is why in the rest of
this manuscript, in order to alleviate the speech and use an easily accessible
jargon, we will only use expressions from the field of structured editing.

We present in this paper, a modular software architecture for the imple-
mentation of a centralized management of cooperative editing workflows where,
stakeholders operate on partial replicas of the document edited collectively. Some
business components of this architecture have already been developed in previ-
ous works [5,12-14]. We describe here primarily, the other technical components
and their orchestration for the effective implementation of a cooperative editing
workflow management system as described in [5].

The rest of this manuscript is organized as follows: we present a literature
review on cooperative editing workflows as well as software architectures used for
their implementation (Sect. 2). We then present (Sect. 3), a software architecture
for designing cooperative editing workflow management systems as described in
[5], and a sample implementation via an editor prototype we developed. Section 4
is devoted to the conclusion.

2 Basic Concepts and Approaches to Manage
Cooperative Editing Workflows

2.1 Workflow and Cooperative Editing

A workflow can be defined as a collection of tasks organized and performed either
by software systems, by humans or both, in order to accomplish some business
process [4]. The aim of the latter is to streamline, coordinate and control busi-
ness processes in an organized, distributed and computerized environment. [4,17]
informally define a business process as an ordered sequence of tasks (made by
men or by programs, even both sometimes) that meets a specific scheme and
leads to a specific result (tracking a medical record [15] is a frequent example of
business process). It is obvious that a business process can be (considered as)
a Computer-Supported Cooperative Work (CSCW). Therefore, workflow man-
agement! needs to facilitate trade, coordination, collaboration and co-decision

! Informally, we design by workflow management, the modeling and computerized
management of all tasks and various actors involved in a business process.

Management of Structured Documents in a Cooperative Editing Workflow 281

between the participants to the underlying business process. To do this, we can
use electronic documents [4,5,10] as media (carriers): it is said in this case, that
the workflow is document-centric [3]. In such workflows, documents move from
one site to another, and are edited progressively?: They therefore contain, at
any time, informations that are indispensable to the cooperation. Since these
documents are edited by different actors, it is a cooperative editing.

Cooperative editing is a work of hierarchically organized groups that oper-
ates according to a schedule involving delays and a division of labor (coordina-
tion). Like any CSCW, cooperative editing is subject to spatial and temporal
constraints. Thus, we distinguish distributed or not, and asynchronous or syn-
chronous cooperative editing. When distributed, the various editing sites are
geographically dispersed and each of them has a local copy of the document
to be edited; systems that support such an edition should offer algorithms for
data replication [23] and for the fusion of updates. When asynchronous, various
co-authors get involved at different times to bring their different contributions.

A cooperative editing workflow goes generally, from the creation of the doc-
ument to edit, to the production of the final document through the alternation
and repetition of distribution, editing and synchronization phases. The literature
is full of several cooperative editing workflows and of their management systems.
We present a few in the next section.

2.2 Cooperative Editing Workflows and Management Approaches

Real-Time Cooperative Editing Workflows. In these generally centralized
systems (Etherpad?® [8], Google Docs?*, Framapad®, Fidus Writer® [11], ...), the
original document is created by a co-author on the central server. The latter
then invites his colleagues to join him for the editing; they therefore connect
to the editing session usually identified by a URL (distribution phase, although
the document is generally not really duplicated). During an editing session (syn-
chronous editing phase), all connected co-authors work on a single copy of the
document but in different contexts. When the integration is automatic, changes
performed by one of them are immediately (automatically) propagated to be
incorporated into the basic document (synchronization phase), and the latter is
then redistributed to others. The changes are saved progressively and the server
usually keeps multiple versions of the document.

The majority of real-time editors uses the model of operational transfor-
mations [6,16]. Their architectures are therefore based on the one defined by
this model. Meaning that, they distinguish two main components: an integration

2 Actors do not necessarily publish documents through specialized software (texts
editors); they perform their tasks related to their respective areas of expertise and
documents are amended accordingly.

3 http://www.etherpad.org/.

* https://www.docs.google.com/.

5 http://www.framasoft.org/.

5 https://www.fiduswriter.org/.

http://www.etherpad.org/
https://www.docs.google.com/
http://www.framasoft.org/
https://www.fiduswriter.org/

282 M. M. Zekeng Ndadji and M. Tchoupé Tchendji

algorithm, responsible for the receipt, dissemination and execution of operations
and a set of processing functions that are responsible of “merging” updates by
serializing two concurrent operations. This type of editing workflow works great
for small groups.

Asynchronous Cooperative Editing Workflows: This edit mode is distin-
guished by real distribution phases in which, the document to edit is replicated
on different sites, using appropriate algorithms [23]. A co-author may then con-
tribute at any time by editing his local copy of the document. Here we focus on
a few asynchronous cooperative editors operating in client-server mode.

Wikiwikiweb: Wikis [19,22] are a family of collaborative editors for editing
web pages from a browser. To edit a page on a Wiki, you must duplicate it and
contribute. After editing, you just have to save to publish a new version of that
page. In the case of a competing editing, it is the last published version which
will be visible. Even though it is still possible to access the previously published
versions, there is no guarantee that a new version of the page preserves intentions
(incorporates aspects) of previous versions. For this aspect, a Wiki can be seen
much more as a web page version manager.

CVS (Concurrent Versions System): Under CVS [2], versions of a docu-
ment are managed in a space called repository and each user has a personal
workspace. To edit a document, the user must create a replica in his workspace.
He will amend this replica, then will release a new version of the document in
the repository. In case the document is edited by several people concurrently and
at least one update has already been published, the author wishing to publish a
new update will be forced to consult and integrate all previous updates through
dedicated tools integrated in CVS.

SVN (Subversion): SVN” [21] was created to replace CVS. Its main goal was to
propose a better implementation of CVS. So as CVS, SVN relies on an optimistic
protocol of concurrent access management: the copy-edit-merge paradigm. SVN
provides many technical changes like: a new commit algorithm, the management
of metadata versions, new user commands and many others features.

Git: The main purpose of Git® [20] is the management of various files in a
content tree considered as a deposit (all files of a source code for example). To
edit a deposit, a given user connects to it and clones (forks). He obtains a copy
of that deposit, modifies it locally through a set of commands provided by Git.
Then he offers his contribution to primary maintainer who can validate it and
thus, merges it with the original deposit. During this operation, new versions of
modified files are created in the main repository. It is therefore possible under
Git, to access any revision of a given file.

" http://www.subversion.apache.org/.
8 https://www.git-scm.com/.

http://www.subversion.apache.org/
https://www.git-scm.com/

Management of Structured Documents in a Cooperative Editing Workflow 283

Badouel and Tchoupé Cooperative Editing Workflow. Badouel and
Tchoupé [5] proposed a workflow for cooperative editing of structured docu-
ments (those with regular structures defined by grammatical models such as
DTD, XML schema [18], ...), based on the concept of “view”. The authors use
context-free grammars as documents templates. A document is thus, a derivation
tree for a given grammar.

The life cycle of a document in their workflow can be sketched as follows:
initially, the document to edit (¢) is in a specific state (initial state); various co-
authors who are potentially located in distant geographical sites, get a copy
of t that they edit locally. For several reasons (confidentiality, security, effi-
ciency, ... [12]), a given co-author “/” has not necessarily access to all the gram-
matical symbols that appear in the tree; only a subset of them can be considered
relevant for him: that is his view (7}). The locally edited document, is therefore
a partial replica (denoted t4,) of the original document. This one is obtained by
projection (m) of the original document with regard to the view of the consid-
ered co-author (tq, = my,(t)). The edition is asynchronous and local documents
obtained are called updated partial replicas denoted by ¢y,

The authors of [5] focus only on the positive edition; edited documents are
only increasing, and the co-authors cannot remove portions of the document
when a synchronization was already performed. For both ensure that property
and to be able to tell a co-author where he shall contribute, the documents being
edited are represented by trees with buds that indicate the only places where
editions are possible. Buds are typed; a bud of sort X is a leaf node labeled X,,: it
can only be edited (extended in a sub-tree) by using a X -production (production
with X as left hand side). ‘

When a synchronization point? is reached, all contributions ty," of different
co-authors are merged in a single global document tflo. To ensure that the
merging is always possible (convergence), the authors of [5] assume that on each
site, the editions are controlled by a local grammar. These local grammars are
obtained from the global one, by projection along the corresponding views [12]. It
can still happen that updates being not compatible!! and therefore the merging
being impossible. To overcome this, we have proposed in [13], an algorithm to
reconcile partial replicas in conflict.

Figure 1 give an overview with a BPMN (Business Process Modeling Nota-
tion) orchestration diagram, of the workflow of cooperative editing of a struc-
tured document according to Badouel and Tchoupé [5] proposal; at site 1,

9 A synchronization point can be defined statically or triggered by a co-author as soon
as certain properties are satisfied.

10 Sometimes the edition should be continued after the merging (it is so, when there
still buds in the merged document): the document must be redistributed to each of
the n co-authors, a (partial) replica tq, of ty, ensuring that t,, = m, (ts), for the
continuation of the editing process.

' This is particularly the case if there is at least one node of the global document
accessible by more than a co-author and edited by at least two of them using different
productions.

284 M. M. Zekeng Ndadji and M. Tchoupé Tchendji

Received partial replicatis
conform to thelocal mode)

Conform
6 ...
Prjected + -+ ©
model

Reception of 3 Local replica | |+
partial replica editing

Site 2 (Editing)

Consensual

Construction of partial
replicas updated
automata,

v
Document Synchrorisation /)
‘ %> (re)distribution <
Doctifent point
creation :
Corform
>—6
Global mods!
of documents

Site 1 ((Re) Distribution +Merging)

Automaton 1 Automaton 2

Automata
synchronizstion

documents
generation

Synchronized

[o I

oo

The document.

can also be
redistributed for
the continuation
of the process,

Initial document

Corform
>
Projectedt - -, .| Reception of apartial Local replica
model replica editing

automaton Documents of consensus

Authors involved in the cooperation (Editing sites)

nnnnn

Joroe

site 3 (Editing)

Received partial replica it is

conform to the local mode) Partial replica updated

Fig.1. A BPMN orchestration diagram sketching a cooperative editing workflow of a
structured document according to Badouel and Tchoupé [5].

operations of (re)distribution and merging of the document in accordance with
a (global) model G are realized; at sites 2 and 3, edition of partial replicas
in accordance with (local) models G and G5 derived by projecting the global
documents template G are done.

In summary, the workflow of Badouel and Tchoupé is different from the
others because of the concept of view and by the fact that it manipulates exclu-
sively (partial) structured documents. The other workflows globally differ in their
approaches and objectives.

We propose in the next section, a flexible software architecture for automat-
ing business processes that could be modelled as workflows of Badouel and
Tchoupé [5].

3 A Software Architecture for Centralized Management
of Cooperative Editing Workflows

3.1 Motivations

The contribution we make to the implementation of workflow management sys-
tems is based on the type of workflow specified in [5]. The choice focused on this
type of workflow is motivated by the fact that:

1. It applies to structured documents: this leads to the fact that we can locally
perform validations in accordance with a local model derived from the global
one;

2. It is particularly suited for administrative workflows: concepts of view and
partial replica introduced by Badouel and Tchoupé, make that the type
of workflow they offer is particularly adapted for the specification of many

Management of Structured Documents in a Cooperative Editing Workflow 285

administrative processes. Consider, for example, the process “tracking a med-
ical record in a health center with the reception and consultation services”:
the aforesaid record can be modelled as a structured document in which the
members of the host service (reception) cannot view and/or modify certain
information contained therein; those information, requesting the expertise of
the consulting staff for example. Therefore we can associate views to each of
these services. It remains only to specify the medical record’s circuit and a
workflow of the type described in [5] is obtained;

3. It does not exist a generic architectural model describing precisely an app-
roach for the implementation of this type of workflow: the only prototype
[14] which was designed around the concepts handled (view, partial replica,
merging, ...) for this type of workflow, was more a graphic tool (editor) for
the experimentation of concepts and algorithms presented in [5]; workflow
management is not addressed in it: this tool cannot be used to specify an
editing workflow, it does not support routing or storage of artifacts, nothing
is done concerning monitoring, ... yet these concerns are among the most
important to be taken care of by a workflow management infrastructure [10].

3.2 Proposed Architecture

Overall Operations. The architecture that we propose is composed of three
tiers: clients, a central server and administration tools. We consider that, each
participant in a given workflow has a client. Initially, the workflow owner (com-
parable to a deposit owner in Git (see footnote 8) [20]) connects to the server
from his client. He creates his workflow by specifying all necessary informations
(the workflow name, the overall grammar, different participants, their rights and
their views, the basic document and the workflow’s circuit), then triggers the pro-
cess. Next, participants concerned by the new created workflow receive an alert
message from the system, inviting them to participate. Each participant must
therefore connect himself to the server to obtain a partial replica of the workflow
model (encoded in a specification file written in a dedicated DSL (Domain Spe-
cific Language [1])) and state (his local document model, a partial replica of the
initial document, ...) according to his rights and his view on the given workflow.
A given participant performs its duties and submits its local (partial) replica to
the central server which performs synchronizations as soon as possible and the
process continues (see Fig. 1) until the end. For specific needs (authentication,
access to corporate data, ...), clients and server may require the intervention
of an administration tool (database, paperwork and many others). These three
tiers are interconnected around a middleware as presented in Fig. 2.

Server Architecture. The server is responsible for the storage, restoration,
execution and monitoring of workflows. Its architecture is based on three basic
elements as shown in Fig. 2(a): its model, storage module and its runtime engine.

1. The model: it is the one orchestrating all the tasks supported by the server.
It consists of a workflow engine, a set of parsers and three communication

286 M. M. Zekeng Ndadji and M. Tchoupé Tchendji

Client I V'S

Model l v

‘}
—— Storage

Editing (textual, = Parsers .
graphic) + —_— interface
compliance check

Editing engine |

Storage
module

Administration tools I

(B) Databases

Legend
User inputs User outputs
l (commands (Trees,
and/or data) messages...)

Middleware

Administrative

calls, services invocation... documents

i
i
i
i
|
f Data exchange, remote procedure H
i
|
i

B uses A to accomplish some of !
A—>B P ;

his tasks. Utilities

N
\ 2

Runtime engine l
[Haskell]
Expansion

Storage
module

Fig. 2. A software architecture (3-tiers) for centralized management of workflows of
cooperative editing of structured documents.

interfaces (the interface with the middleware, that with the storage module
and the one with the runtime engine).

The storage module: it is responsible for the storage of workflows. Like CVS; it
maintains a main repository for each workflow. The repository space of a given
workflow includes its specification file written in a DSL [1] which is the subject
of a work in progress'?. There are also (global) document versions showing
the state of the workflow at given times. These versions of the underlying
documents, facilitate the control and monitoring of workflows.

The runtime engine: it consists of implementations of projection, expansion
[5] and consensual merging [13] algorithms. These implementations are used
by the workflow engine in the realization of these tasks. A runtime engine
written entirely in Haskell, was proposed in [14]. However, it is quite rigid
and almost impossible to adapt to the architecture presented here. To this
end, we present in Sect. 3.3, a more flexible version of the latter.

2 Indeed, workflows such as we manipulate, can not be easily specified in their entirety
with the help of current notations (BPMN, statescharts [5], Petri Network with
Objects [15], ...).

Management of Structured Documents in a Cooperative Editing Workflow 287

Client Architecture. The client (Fig.2(b)) is also based on three entities: a
model, an editing engine and a storage module. The model is responsible for
organizing and controlling the execution of tasks and user commands. For each
new local workflow, the model generates an editing environment which is used
by the editing engine to provide conventional facilities of structured document
editors (compliance check, syntax highlighting, graphical editing of documents
presentations, ...). Each workflow is locally represented by a specification file
and by one structured document (an update of a partial replication of a global
one) representing the current perception of the overall workflow from the current
local site. When reaching synchronization phases, the local structured document
is forwarded to the server site, where it is merged with others in one structured
document representing the current state of the overall workflow: they are there-
fore, coordination supports between workflow engines of the client and of the
server.

The Middleware. The middleware is responsible for the interaction between
different tiers of our architecture. It must be designed so that the coupling
between these tiers is as weak as possible. One can for this purpose, consider a
Service-Oriented Architecture (SOA) in which:

— Our clients are service clients;

— The server is a service provider for clients and a client of services offered by
the administration tools;

— The administration tools are service providers.

With such an architecture, we can guarantee the independence of each tier and
thus, an easier maintenance.

3.3 TinyCE v2

Due to its technical nature and to the number of technologies it needs for its
instantiation, the architecture presented in this paper has not yet been fully
implemented. However, many of its components have already been implemented
and tested in a test project called TinyCE v2'? (a Tiny Cooperative Editor
version 2).

TinyCE v2 is an editor prototype providing graphic and cooperative editing
of the abstract structure of structured documents. It is used following a net-
worked client-server model. Its user interface offers to the user, facilities for the
creation of workflows (documents, grammars, actors and views (Fig.3)), edit-
ing and validation of partial replicas (Fig.4). Moreover, this interface also offers
to him, functionality to experiment the concepts of projection, expansion and
consensual merging (Fig.5). TinyCE v2 is designed using Java and Haskell lan-
guages. It offers several implementations of our architecture concepts namely:
parsers, storage modules, server’s runtime engine, workflow engines and commu-
nication interfaces.

'3 TinyCE v2 is a more advanced version of TinyCE [14].

288 M. M. Zekeng Ndadji and M. Tchoupé Tchendji

Steps

Choose a creation mode.

Steps

Grammar and views
“1- Choose a creation mode

“1- Choose a creation mode. Enter productions (one per line, £=epsilon) :
-2- Grammar and views

Mode : Use a template [~ 2 Grammar and views a>cB B
3- Define co-authors 3 Define co-authors Aot
-4 Initial document Template : ExempleChapitre3. [~ -4 Initial docament c->AC
Use this host as synchronization server. C>E
c>cc
Synchro. serv... BE>BB
B->ca y
Workflow's name :
ExempleChapitre3]

Yo can ko perfor adrag and deopof -5 af e
T

Liste of this workflow various views :

Choose axiom :

viewAB = {A, B} Q

[a]

Ceee ERO E2

1- Workflow name, synchronization server and then, click on "Next"

-

2- Definitions of productions, axiom of the grammar and various views.

x
Steps Define co-authors Steps Initial document
“1- Choose a creation mode =]

“1- Choose 2 creation mode.
2- Grammar and views

Yourlogin: [Maxim10 PETIENED Document abstract structure :
3 Define co-authors 3 k
-4~ Initial document. -4 Initiz 1.c]].B[Ce .00
Password : - ‘
List of this workflow various co-authors : [e |

[Save this workflow as template

No; No View = view... @

0

Template's na...

Auteur1 ; Global view = Yes ; Choose the consensus = Yes; View = vie.. &)

[}

- |

3- Informations on workflow owner and on different co-authors

- EnEa

4- Creation of the global initial document

Fig. 3. Some screenshots showing process of creation of a workflow of cooperative
editing in TinyCE v2.

Local workflows | Remote workflows L

Local workflows | Remote workflows
Enter your identifiers = " -
Server: [192.168.154.1 ‘ o ‘ [-7 ArticleFusionConsensuelle
o . S semplChaives
‘humun ‘ 3 M’ [Identifier : ExempleChapitre3
D Identifier : ExempleChapitre3
Password :

D Local identifier : ExempleChapitre3

| >

[Enable login and pass remind

[Created by : Maxim10
[Server: 192.168.154.1
[=3 MiseEnOeuvreRCSF

[Created by : Maxim10

[Server:192.168.154.1

[~ LeMondeFantastiqueDesAgents
[=3 UnAutreWorkflow

1- Authentication of the co-author
Auteurl

2- Showing available remote
workflows for Auteurl

3- Displaying local workflows of
Auteurl

Fig. 4. Some screenshots of TinyCE v2 showing the authentication window of a co-

author (Auteurl) as well as those displaying the various local and remote workflow in
which he is implicated.

Management of Structured Documents in a Cooperative Editing Workflow 289

TinyCE v2 - o IEN
File Runaworkflow Help
D LOGOW N0 W HON
(" Local workflows | Remote workflows | ||(Control panel | Local grammar | Local edition | Details
[=] ArticleFusiy
[ExempleChapitre3

[=] LeMondeFantastiqueDesAgents
[UnAutreWorkflow

QU0 O [initial document | _Document1

Fig. 5. An illustration of consensual merging in TinyCE v2.

As in [14], the runtime engine of TinyCE v2 exploits the possibility offered
by Java, to run an external program. Indeed, we designed an interface of TinyCE
v2 (runtime interface) capable of launching a Haskell interpreter (GHCi - Glas-
gow Haskell Compiler interactive - [7] in this case) and make it execute various
commands. When creating a workflow, TinyCE v2 generates a Haskell program
file (.hs) [9], containing data types and functions necessary to achieve the oper-
ations of projection, expansion and consensual merging on the structured docu-
ment representing the state of that workflow. In this way, we considerably reduce
the use frequency of parsers presented in [14]. The functions are more open to
changes as they are contained in a text file and not in a compiled program as
n [14]. In fact, the main differences between our Java-Haskell cross-fertilization
approach and the one of [14] are almost the same that drive the debates on inter-
preted and compiled languages; our approach is likened to interpreted languages
and that of [14], to compiled languages. So, even though our approach can present
security risks (that can be addressed using PKI (Public Key Infrastructure) and
standard encryption systems like AES (Advanced Encryption Standard), RSA
(Rivest Shamir Adleman) ...), it has the advantage of being portable and easier
to maintain.

290 M. M. Zekeng Ndadji and M. Tchoupé Tchendji

4 Conclusion

We presented in this paper, a 3-tiers software architecture for the production of
a system for centralized management of administrative workflows that can be
modelled as cooperative editing of structured documents. This type of workflow
has been subject of previous works. The particularity here is that, according to
their views, actors only have partial perception of the overall document. Previous
works has been focused on the definition of basic concepts, mathematical models
and punctual functions of (models and documents) replication and fusion (some
of them are written in the lazy functional language named Haskell). Here, we
have proposed a modular architecture for such a system by presenting a coher-
ent arrangement of independent modules. Our architecture is flexible because it
leaves to the designer the choice of certain design methods and to the developer,
the one of the main languages and tools to use. Inspired by the TinyCE system
[14], we proposed an implementation of our architecture. In short, the architec-
ture presented here, its different components and their implementation are the
fruit of this work.

Some of our subsequent work focus on the design of a DSL for specifying
workflows theorized in [5]. An avenue to explore is rather in creating a DSEL
(Domain Specific Embedded Language) of BPMN and enrich it by the con-
cepts of grammatical model, view, editing, compliance and validation. We are
also investing to complete the implementation of the architecture presented in
this paper.

References

1. Van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated
bibliography. ACM SIGPLAN Not. 35(6), 36 (2000)

2. Berliner, B.: CVS II: parallelizing software development. In: Proceedings of the
USENIX Winter 1990 Technical Conference, Berkeley, Californie, Etats-Unis, pp.
341-352. USENIX Association (1990)

3. Frye, C.: Move to workflow provokes business process scrutiny. Softw. Mag. 14(4),
7785 (1994)

4. Georgakopoulos, D., Hornick, M., Sheth, A.: An overview of workflow management:
from process modeling to workflow automation infrastructure. Distrib. Parallel
Databases 3, 119-153 (1995)

5. Badouel, E., Tchoupé, M.: Merging hierarchically structured documents in work-
flow systems. Electron. Notes Theor. Comput. Sci. 203(5), 3-24 (2008). Proceed-
ings of the Ninth Workshop on Coalgebraic Methods in Computer Science (CMCS
2008), Budapest

6. Oster, G.: Réplication optimiste et cohérence des données dans les environnements

collaboratifs répartis. Autre [cs.OH]. These de Doctorat/Ph.D., Université Henri

Poincaré - Nancy I (2005)

GHC: The Glasgow Haskell Compiler: GHC. http://www.haskell.org/ghc/

8. Giannetti, J., Lord, M.-A.: Une plateforme Web pour soutenir la réécriture collab-
orative: EtherPad, Premiere partie. Formation et profession 23(1), 71-73 (2015).
https://doi.org/10.18162/fp.2015.a51

=

http://www.haskell.org/ghc/
https://doi.org/10.18162/fp.2015.a51

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.
23.

Management of Structured Documents in a Cooperative Editing Workflow 291

Haskell: A purely functional language. http://www.haskell.org

. Institute of Management Accountants: Implementing automated workflow manage-

ment. Business Performance Management, IMA Publication Number 00354 (2002).
ISBN 0-86641-290-5

Wilm, J., Frebel, D.: Real-world challenges to collaborative text creation. ACM,
14 September 2014. ISBN 978-1-4503-2964-4

Tchoupé, M.T., Atemkeng, M.T., Djeumen, R.: Un modeéle de documents stable
par projections pour I’édition coopérative asynchrone. In: CARI 2014 Proceedings,
vol. 1, pp. 325-332 (2014)

Tchoupé, M.T., Ndadji, M.M.Z.: Réconciliation par consensus des mises a jour des
répliques partielles d’'un document structuré. In: CARI 2016 Proceedings, vol. 1,
pp. 84-96 (2016)

Tchoupé, M. T.: Fertilisation croisée d’un langage fonctionnel et d’un langage objet:
application a la mise en oeuvre d’un prototype d’éditeur coopératif asynchrone. In:
CARI 2010 - Yamoussoukro, pp. 541-549 (2010)

Chaabane, M.A., Bouzguenda, L., Bouaziz, R., Gargouri, F.: Spécification des pro-
cessus workflows évolutifs versionnés. Schedae, prépublication numéro 11, fascicule
numéro 2, pp. 21-29 (2007)

Tlili, M.: Infrastructure P2P pour la Réplication et la Réconciliation des Données.
Base de données [cs.DB]. These de Doctorat/Ph.D., Université de Nantes (2011)
Curcin, V., Ghanem, M.: Scientific workflow systems - can one size fit all? In:
Proceedings of the 2008 IEEE, CIBEC 2008 (2008)

W3C. extensible markup language (xml), W3C Recommendation 1.0 (second edi-
tion), octobre 2000

Cunningham, W.: Wikiwikiweb history (2005). http://c2.com/cgi/wiki?
WikiHistory

Wikipédia: git - Wikipédia. https://fr.wikipedia.org/wiki/git

Some of the authors of Subversion: Version Control with Subversion. http://
svnbook.red-bean.com/

Wikimedia: Wikipedia: the free encyclopedia that anyone can edit (2005)

Saito, Y., Shapiro, M.: Optimistic replication. ACM Comput. Surv. V(3), 1-44
(2005)

http://www.haskell.org
http://c2.com/cgi/wiki?WikiHistory
http://c2.com/cgi/wiki?WikiHistory
https://fr.wikipedia.org/wiki/git
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/

	A Software Architecture for Centralized Management of Structured Documents in a Cooperative Editing Workflow
	1 Introduction
	2 Basic Concepts and Approaches to Manage Cooperative Editing Workflows
	2.1 Workflow and Cooperative Editing
	2.2 Cooperative Editing Workflows and Management Approaches

	3 A Software Architecture for Centralized Management of Cooperative Editing Workflows
	3.1 Motivations
	3.2 Proposed Architecture
	3.3 TinyCE v2

	4 Conclusion
	References

