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Abstract. The three main events presented in the electrocardiogram
(ECG) signal of each heartbeat are: the P wave, the QRS complex and
the T wave. Each event contains its own peak, making this important to
analyze their morphology, amplitude and duration for cardiac abnormal-
ities. In this study, we propose a system for biomedical signal analysis
based on empirical mode decomposition. Mustispectral analysis is first
performed to remove noise, detect QRS complex and compute the QRS
wide. Then statistical features and QRS wide are after used as inputs of
classifier based on neural network model. The proposed methodology is
tested on real biomedical data and discussed.
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1 Introduction

The three main events presented in the electrocardiogram (ECGQ) signal of each
heartbeat are: the P wave, the QRS complex and the T wave. Each event contains
its own peak, making this important to analyze their morphology, amplitude
and duration for cardiac abnormalities. In order to provide tools to contribute
to more accurate diagnosis, several signal processing algorithms have been devel-
oped to facilitate the continuous follow up and customized care. Al-Ashkar [1]
used non linear filtering scheme for edge detection according a transition slope
sign. Rodriguez et al. [11] proposed feature extraction based on Hilbert trans-
form, adaptative threshold and principal component analysis. Empirical mode
decomposition (EMD) has been also widely used for source separation and noise
elimination. Indeed, EMD is adaptive, depends on the position of the extrema
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of the signal, is non-linear and non-stationary [4,6,7,12]. Many methods have
been developed for classification based on non linear features of ECG signals [3],
machine vector support [9], Markov chain models [2] and artificial neural net-
work (ANN) models [8,10,13]. Compared to the other methods, Neural networks
offer a number of advantages: less formal statistical training, ability to implic-
itly detect complex nonlinear relationships between dependent and independent
variables, ability to detect all possible interactions between predictor variables,
and the availability of multiple training algorithms [14]. However, NN is often
described as a black box learning approach. In this study, we propose a system
for biomedical signal analysis based on Empirical Mode Decomposition (EMD)
and multilayer perceptron neural network model. The Butterworth filtering is
first used for signal noise elimination and then QRS detection is carried out using
empirical Mode Decomposition (EMD). Statistical features and morphological
feature such as QRS wide are used as inputs of a Multi Layer Perceptron network
model. The schematic diagram of the processing steps is illustrated by Fig. 1.

The paper is organized as follows. Section 2 recalls related works and some
basics concepts. Section 3 deals with the proposed noise elimination method,
QRS wide detection and the proposed. Section 4 illustrates the developed method
on real biomedical data and discusses the obtained results. The proposed method
is applied to PhysioNet ECG database for classification of normal and abnormal
ECG signals. Section 5 gives conclusion and perspectives of this study.
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Fig. 1. Schematic diagram of the processing steps: noise elimination process is first
performed before a classification based on features extracted using empirical mode
decomposition (EMD) and principal component analysis (PCA)

2 Tools for Biomedical Signal Analysis

This section recalls some basics tools for ECG arrhythmia analysis such as
feature extraction, empirical mode decomposition and the classifier construc-
tion basis.
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2.1 Feature Extraction

In general, the ECG signal of a single cardiac cycle lies on the P, T and QRS
complex waves as depicted in Fig. 2. The ECG analysis is related to the detection
of QRS because of the presence of low amplitudes, negative polarities and noise.
The QRS wide is one of the most feature selected for signal recognition and
classification. In this study, the QRS detection is performed using the empirical
mode decomposition (EMD).
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Fig. 2. Electrocardiogram QRS complex [11]: cardiac cycle lies on the P, T and QRS
complex waves.

2.2 Empirical Mode Decomposition

EMD algorithms decompose iteratively a complex signal s (n) into elementary
AM-FM type components called Intrinsic Mode Functions (IMF) [6]:

K
s(n)=rg(n) + Z imfr (n) (1)
k=1

where im fi is the k-th mode or IMF of the signal and r; stands for residual
trend. Sifting procedure generates a finite number of IMF's. Indeed, the under-
lying principle of the EMD decomposition is to locally identify in the signal, the
most rapid oscillations defined as the waveform interpolating local maxima and
minima. To do so, these later points are interpolated with cubic spline to yield
the upper and lower envelopes. The mean envelope is then subtracted from the
initial signal and the same interpolation scheme is reiterated. In this study, we
use the algorithm presented in [6] for the empirical mode decomposition.

2.3 Principal Component Analysis

Principal component analysis is carried out to select the most important features
of the ECG data, among computed statistical properties (mean, variance, covari-
ance, correlation, energy, power...), to reduce their number and at the same time
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retain as possible of their class discriminatory information. The PCA involves
three main phases

1. Computation of variance matrix from data X
. T
V:(X—X)(X—X) (2)

where X is the data matrix and tildeX the mean vector of X.
2. Calculate the array of eigenvectors E and diagonal matrix of eigenvalues

E-'WE=D (3)

3. Sort the eigenvectors in F in descending order of eigenvalues in D and project
the data on these eigenvector directions by taking the inner product between
the data matrix and the sorted eigenvector matrix

T

U= [ET (X - X') T} (4)

2.4 Classifier Construction

ECG beat recognition and classification depend on various features (morpholog-
ical, temporal and statistical). These features can be used as input of a neural
network classifier. The most used neural networks are Multi Layer Perceptron
neural networks (MLP-NN). A MLP consist of an input layer, several hidden
layer and an output layer. A node also called a neuron includes a summer and
nonlinear activation function g as illustrated by Fig. 3.

Fig. 3. Schematic illustration of a node (neuron): the inputs of a neuron are multiplied
by weights summed up with bias terms.

The inputs (z1,...,2£x) to the neuron are multiplied by weights wy; and
summed up together with the constant bias term 6;. The resulting n; =
Z;il w;;x; + 0; is the input to the activation function g.

3 The Proposed Biomedical Analysis Methods

This section describes the proposed methods for noise removal, QRS wide extrac-
tion and classification. The proposed classification system adopts different meth-
ods following morphological feature extraction through empirical mode decom-
position, QRS complex detection and the most discriminant statistical features
extraction using principal component analysis. For each signal, the noise is first
removed before performing a QRS complex detection and classification.
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3.1 Noise Removal

We are interested in noise elimination method for QRS wide detection. Zhang
et al. [15] listed many advantages of low Butterworth low pass filter of order 6
with frequencies from 5 to 15 for ECG signal noise removal. Other methods are
based on empirical mode decomposition. Indeed, the first IMF contains mostly
high frequency noise and some QRS information [7]. However, if the first IMF
are removed and others retained, the resulting output may contains considerable
level of noise. In this study we propose noise removal method based on Butter-
worth filtering and the first IMF removal method. The principle consist at first
perform Butterworth filtering for a smooth preprocessing and then remove the
first IMF which contains high frequency noise.

3.2 QRS Complex Detection

Detection of QRS complex is the entry point of almost all ECG analysis tech-
nique. For a signal, we propose the step by step process described in Algorithm 1
for the QRS wide computation.

Algorithm 1. Pseudocode to compute the QRS wide

: function larger(x)

x : ecg records

m,im : the maxima of x and it’s index
7im : the extremum maxima index

11,12 : previous and next index from iim
w : the QRS with

ex «— extrema(x) extrema

m «— maz(x)

9: im,tim «— find(x = max(z)), find(ex = im)
10: 11,12 « ex(iim — 1), ex(iim + 1)

11: w « (12 —11)

12: return w

Our method for QRS detection is based on empirical mode decomposition
(EMD). Indeed, It has been shown that the first IMFs will have the QRS infor-
mation as QRS regions is high frequency component [4,7,12]. The two first
IMFs (Eq. 1) contain only the most low frequency and waves like P and T are
filtered out from consideration [7]. Thus, in this study we suppose that the first
IMF contains the QRS complex. The proposed method involves the computation
of the first IMF before the QRS computation as described in Algorithm 1.

3.3 The Neural Network Model

The input data for the Neural Network are: the QRS width detection and
the most discriminant statistical properties among mean, variance, root mean
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squared (RMS), energy and power. Each input data is associated a weight and
is computed from each record. If for example, the RMS is not a discriminant
properties then it’s weight is equal to zero.

For each node, the input is multiplied by weights (pm, en, pen, pp, pl,r): sp =
m*xpm+v*xpv+enxpen+pxpp+ L xpl+ sxr where m,pv,e,en,p,l,s are
respectively the mean, the variance, the energy, the power, the QRS width and
the RMS. Then, the difference s = sp — w between the neural network threshold
w and sp is used as input of the activation (sigmoid) function defined as follows

1

T = T eeca)

()

Algorithm 2 gives detailed description of the step processing of a node.

Algorithm 2. Pseudocode to compute a node output

function neurone(x,w)

x; ecg records

w : the node’s threshold

n : length(z)

s—0

for i — 1 ton do
s—s+x(1,1) xx(2,1)
t—1+1

end for

,_.
o ©

IS Ss—w
ty — 1/(1+ exp(—s))
: return y

—_ =
[N

Let us suppose that, the number of input of the classifier is six (the mean, the
variance, the energy, the power, the QRS width and the RMS). If a statistical
parameter is not considered after ACP analysis, then it’s associated weight is
equal to zero. We propose to compute the 1°! node with all the six parameters,
the six other nodes (274, 374, 4th 5th 6" 7th) with five parameters (the variance,
the energy, the power, the QRS width and the RMS) and the 8" node with the
output of the node 1, the node 2, the node 3, the node 4, the node 5, the
node 6 and the node 7. The computed nodes are then assembled using the step
processing described in Algorithm 3.

The training provide the thresholds of the network nodes. It is implemented
with a function called train which take as input the feature vector from the
training set database and gives as output a threshold. The threshold defines the
neural network quality and is computed from the nodes of the neural network.
Algorithm 4 describes the training evaluation process.

The error rate and the performance rate are used as validation and test
parameters during the classification process (see Algorithm 5). The network per-
formance is evaluated with the percentage of correct ecg classification results.
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Algorithm 3. Pseudo code for the neural network

©

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

function network(x,w)

x : ecg records

w : the threshold

vl « vector(z): six parameters

v2 «— [v1(1),v1(2),v1(3),v1(4),v1(5)]
v3 «— [v1(1),v1(2),v1(3),v1(4),v1(6)]
vd — [v1(1),v1(2),v1(3),v1(5),v1(6)]
05— [v1(1),v1(2),v1(4),v1(5),v1(6)]
v6 «— [v1(1),v1(3),v1(4),v1(5),v1(6)]
07 — [v1(2),v1(3),v1(4),v1(5),v1(6)]
s1 «— neurone(vl, w)
$2 — neurone(v2, w)
$3 «— neurone(v3, w)
s4 — neurone(vd, w)
sb «— neurone(v5, w)
56 «— neurone(v6, w)

sT7 — neurone(v7,w)

v8 «— [s1, 52, 83, 54, $5, 6, sT]

s < neurone(v8,w): the output of the network
return s

Algorithm 4. Pseudo code for the network performance evaluation

function evaluate(t,s)

t: test db

s : desired output

w « train(t) threshold

r «— network(t,w) computed output
e — error(s,r)

p < per formance(s,r)

v le,p]

return v

4

Application to Biomedical Signal Analysis

The proposed methods for biomedical signal analysis are applied to PhysioNet
ECG database using Matlab 2013 software. The ECG records used in this study
is the MIT-BIH arrhythmia database [5]. Example of computed features on the
10 first ecg records are resumed in Table 1.

4.1 MIT BIH Databases Records

The MIT-BIH arrhythmia database contains two channels ambulatory recordings
obtaining from 48 subjects studied by BIH Arrhythmia Laboratory between 1975
and 1979. The recordings were digitized at 360 samples per second per channel
with 11 bit resolution over a 10 mV range. In this study, the second channel
recording is studied. The records (100, 101, 102, 103, 104, 105, 106, 107, 108,
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Table 1. Computed characteristics on a sample of ECG records

N° | MIT-MIH | Mean Variance | Root mean | Energy | Power QRS wide
patient (mm) (mm?) | square (mm) | (mm?) |(mm?) | (ms)

1 100 —0.078 ]0.028 0.168 0.034 4.116 0.0500

2 101 0.152 0.015 0.122 0.038 4.59 0.1170

3 102 0.087 0.100 0.316 0.107 4.116 0.3000

4 1103 0.182 0.002 0.041 0.035 4.212 0.0550

5 104 0.138 0.001 0.033 0.020 2.408 0.2050

IMF7 IMF6 IMF5 IMF4 IMF3 IMF2 IMF1

Fig. 4. MIT BIH patient 100 ECG empirical mode decomposition

109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 200, 201, 202,
203, 205, 207, 208, 209, 210, 212, 213, 214, 215, 217, 219, 220, 221, 222, 223, 228,
230, 231, 232, 233, 234) are numbered respectively from 1 to 48.

4.2 Noise Elimination

For each ecg record of the MIT BIH sample, a noise elimination procedure is
first performed before the QRS wide computation. The proposed method is based
on empirical mode decomposition (EMD). Figure4 shows an electrocardiogram
record and the resulting IMFs after the EMD decomposition.

Figure5 illustrates the noise removal method proposed on two sets of
ECG samples.

If the first IMF is removed, the signal shape is more smooth but there are
appearance of non desired artifacts. With the removal of the second IMF, the
shape is conserved but the noise are not removed. The Butterworth filter gives
good results but it changes sometimes the shape of signal. Indeed, for the MIT
BIH patient 116 the shape is locally changed whenever the Butterworth filter is
performed. We obtained better results with the proposed method which consist
at first to perform Butterworth filtering and after remove the first IMF. The
amplitude of the QRS decreases but the computation of the extrema is more
easy. And as we are concerned in this study with the computation of QRS wide
from the extrema, the proposed method gives better results.
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Fig. 5. EMD based noise elimination for QRS wide detection: the proposed method
consist at first to perform Butterworth filtering and then remove the first imf

4.3 Features Extraction and Analysis

After noise removal, the ECG QRS width is computed according the step by step
process described in Algorithm 1. The higher QRS width (0.3 ms) is obtained
with ECG record of MIT BIH patient 102. The lower QRS width (0.038 ms) is
computed from the ECG record of MIT BIH patient 124. The mean and the
dispersion computed from the ecg records are respectively 0.13ms and 0.12.

From the considered statistical features, the most discriminant are extracted.
The evolution of the selected characteristics according to the ecg record number
is illustrated in Fig. 6.

To study the influence of the selected feature, we perform ecg record shape
similarity analysis. From the selected statistical properties and the QRS wide,
a clustering based on the minimal linkage distance is performed. The result is
illustrated in Fig. 7.

Among the more similar ecg records are: ecg 12 (MITBIH patient 112) and
ecg 22 (MITBIH patient 123), ecg 5 (MITBIH patient 104) and ecg 9 (MITBIH
patient 108), ecg 2 (MITBIH patient 101) and ecg 4 (MITBIH patient 103).
Among the most dissimilar ecg records are: ecg 12 (MITBIH patient 112) and
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statistical features
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Fig. 6. Evolution of the selected feature characteristics according to the ecg record
number
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Fig. 7. ECG clustering from the feature vector

ecg 11 (MITBIH patient 111), ecg 22 (MITBIH patient 123) and ecg 11 (MITBIH
patient 111). Ecg records of the MIT BIH patients 116 and 203 are also very
dissimilar (Fig.4).

4.4 Classification

The output coding is defining as follows: 0 for abnormal signal and 1 normal
signal. The output of the neural network (Algorithm 3) computed from all the
nodes are then used for the ecg records classification. Algorithm 5 gives the main
processing of the classifier.

The network is created with 70% training set, 15% validation set and 15%
test set. The results are compared with clinical experimental results available
on the physio-net web set. The performance of the classification is 82%. The
samples that were not correctly classified are MIT BIH patient 213, 214, 217,
220, 222, 231, 232 and 233.

Future studies will aim to improve the neural network architecture by more
straightening the choice of the number of nodes, the training set, the test set
and the validation set. The proposed classifier and the performance evaluation
model will also be improved.
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Algorithm 5. Pseudo code for the classifier

: function classify(z,w)
x : ecg records
w «— train(t): the threshold
fs « filter(x) the filtered signal
v « vector(fs): the vector of the filtered signal attributes
rn «— network (v, w) the neural network output
if rn < 0.5 then
¢ «+— 0 for abnormal class
else
¢ < 1 for normal class
: end if
: return ¢

—_ =
N = O ©

5 Conclusion

In this work, tools for biomedical signal analysis are proposed. We first pro-
pose noise removal process based on empirical mode decomposition (EMD) and
the Butterworth filtering. Then, QRS complex detection method from EMD is
proposed and an algorithm for QRS wide computation is given and tested on
ECG records. This latter set was used to perform data analysis and study ECG
records similarities. A neural network classifier taking as input statistical char-
acteristics and the QRS wide is also proposed and applied on MIT BIH ECG
records. In future works, the following improvements will be considered: improve
the proposed classification method, use more geometrical ECG features, extends
the classification method to biomedical signals of higher dimensions, performs
validation tests and add security supplement for data privacy management.
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