
Megamodel Consistency Management
at Runtime

El Hadji Bassirou Toure(B), Ibrahima Fall, Alassane Bah,
and Mamadou Samba Camara

Institut de Recherche pour le Développement (IRD),
École Supérieure Polytechnique (ESP),

Université Cheikh Anta Diop de Dakar (UCAD), Dakar, Senegal
{bassirou.toure,ibrahima.fall}@esp.sn,

{alassane.bah,mamadousamba.camara}@ucad.edu.sn

Abstract. This paper addresses the problem of ensuring consistency,
correctness and other properties in dynamically changing software sys-
tems. The approach uses a Megamodel that represents the current state
of the system at runtime including some rules. These rules are formu-
lated as Hoare-Triples and allow to check whether modifications to the
software system result in a consistent state, otherwise to fix changes that
are likely to violate the megamodel integrity.

Keywords: Runtime software evolution · Runtime verification
Megamodeling · Correctness · Axiomatic semantics

1 Introduction

Software architectures increasingly rely on abstractions to describe system com-
ponents, the way the components interact and the rules governing the compo-
sition of components into systems. Very often these descriptions address high-
level and complex aspects of the software [1]. And this increased complexity
of systems requires raising the level of abstraction. Model-Driven Engineering
(MDE) is an approach that advocates software abstraction through an exclusive
use of models. In fact, MDE specifically considers software models which are
abstractions of static or dynamic properties of a software system [2]. In fact,
it is a “recent” Software Engineering (SE) field which promotes the exclusive
use of models in the software system development, maintenance and evolution.
A model is recursively defined as an artifact which consists of model elements,
conforms to a specific metamodel and represents a given view of a system. A
metamodel can be defined as a model of the language used to represent a given
model [3]. MDE also distinguishes prescriptive models and descriptive models. A
prescriptive model is a model which represents the manner a system has to be
created, i.e. the system is built on the basis of the model. While a descriptive
model provides information about an existing system. This distinction allows to
define model correctness and system validity which are two concepts related to
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

C. M. F. Kebe et al. (Eds.): InterSol 2017/CNRIA 2017, LNICST 204, pp. 257–266, 2018.

https://doi.org/10.1007/978-3-319-72965-7_24



258 E. H. B. Toure et al.

the causal connection between a model and the system it represents. In fact,
a model is correct if all its statements are true for the represented system. A
system is valid according to its specifications if no statement in the model is
false for that system [7].

MDE uses the concept of a megamodel as a building block for modeling in the
large. For that a megamodel must ignore the internal details of global entities
such as models and metamodels by stressing on the “big picture”, i.e. system
architecture, assignment of models as parameters or results for model transfor-
mations. Indeed a megamodel is considered as being a model whose elements
are models and which considers the interconnections between multiple models
in the form of model operations [3]. That is why megamodels are often used
for representing the components of an architecture and the interactions between
them [5].

Software architectures are often made to evolve due to changing user needs
and/or to execution environment. Such changes are often done through adap-
tation mechanisms in which components are often added to or removed from
multiple operations in the system. In this context for a system with few changing
requirements, it probably suffices to apply these adaptations at the development-
time. However in a dynamically evolving system, changes to the execution envi-
ronment, to the components and/or interconnections, may take place at runtime.
Indeed in many application domains there is a need that the system accommo-
dates changes dynamically, without stopping or disturbing the operation of those
parts of the system unaffected by the changes [11].

Moreover the identity of the components that a system will utilize may not
be known until the execution phase. For that a software architecture is then
modeled as a collection of particular MDE models which are called runtime
models. A runtime model provides a view, on a running software system, that
is usually used for managing the system to which it is causally connected [4].
The causal connection between models and represented systems means that each
time the system changes, then the model is updated, and similarly, if the model
changes, it causes the proper system change [6].

In this paper we propose the use of a runtime megamodel to represent the
current state of a running system. It consists of related runtime models which
represent runtime artifacts. Such runtime artifacts may include component cre-
ation and destruction, exceptions/errors, operation inputs and output, component
operations invocation, dynamic artifact types, dynamic component names, and so
on. Modifying part of a system in one model can thus introduce inconsistencies
with related parts of the system specified in other models. Thus these models
can be inconsistent with each other since they describe the system from different
aspects and views. Therefore there is an inherent need to preserve consistency
between those models registered in a runtime megamodel even when the software
evolves.

To ensure consistency and functional validity of the dynamically changing
systems, a runtime verification system is required. Runtime verification is a
method of checking whether the active execution trace of software adheres to
its specifications [13]. Against to other verification techniques such as model



Megamodel Consistency Management at Runtime 259

checking which aims at checking all possible execution traces of the software, run-
time verification reduces the verification scope to one execution of the software;
this increases the accuracy of the verification, especially for dynamic artifacts of
the software.

For that we will consider the runtime megamodel as being an execution envi-
ronment or a program in which instructions are operations that mainly compute
with component models by adding or removing them even though these changes
have not to violate the correctness of the megamodel vis− à− vis to the repre-
sented systems. Accordingly we use techniques for proving programs correctness
known as Hoare’s axiomatic semantics and some inference rules in order to set
up our runtime verification technique which enables us to keep the megamodel
consistent at anytime.

Organization of the paper. The remainder of this paper is articulated as
follows. In Sect. 2, we begin with the presentation of an illustrative example
which will be used throughout the paper. Section 3 Presents the approach by
using the running example to illustrate it. Section 4 is reserved for the conclusion.

2 Illustrative Example

In this illustrative example which will be used all around the paper, we suppose
that we have a megamodel M which represents a model of a system S (see
Fig. 1). Given that we have a new tool T to plug in the system S which is
already deployed and running.

Fig. 1. The running Example



260 E. H. B. Toure et al.

For that we suppose that T will be added to S to the data dimension.

– Let M be the megamodel representing the system S.
– Let msd be the component model representing the data model of S.
– Let mtd be the component model representing the data model of T.
– Let mapd be the component model representing a morphism for msd and mtd.

3 Our Approach

3.1 Overview of the Approach

The presented approach proposes a runtime megamodel to represent a running
software system. The approach will use a megamodel which represents an exe-
cution model of the running system to which it is causally connected. Indeed
the megamodel is deployed with the system and used as a basis for model man-
agement and changes representation. Our approach should also provide infer-
ence rules for reasoning about, specifying, and representing change operations.
Thereby checking the megamodel’s consistency by defining a formal-safe execu-
tion as well as an execution semantic for each operation likely to modify the
megamodel contents.

3.2 The Runtime Megamodel

To create a composite system, the first step should be to highlight the system
components which represent the artifact that will be put in the new system.
To facilitate this process, component models will be stored in a megamodel con-
sidered as a registry of components and their interactions. The access and the
management of such a megamodel should be done at runtime. Each component
model will have a name to identify it and a type to represent its metamodel. A
component model should also specify the information it represents. Such infor-
mations can be a functional or nun-functional element, a process element, a data
element, etc. A Component model can either be used to create a new artifact, in
this case it is said a prescriptive model or it can be used to describe an existing
artifact and in that case it is called a descriptive model Fig. 2. An extensive
study of the semantic of each operation is presented in [5] to which we refer the
reader for further information.

Application

In our application, the megamodel is represented through an ecore metamodel
(Fig. 2). It is considered as an environment which is managed using a textual
Domain-Specific Language (DSL): the Mega Operation Management and Execu-
tion (MOME) which is being constructed.

3.3 Changes in the Megamodel

The megamodel consists of component models and global operation models. A
global operation model can be considered as a type of a global operation instance.



Megamodel Consistency Management at Runtime 261

Fig. 2. The megamodel metamodel.

Therefore, it represents a model of future interactions which are global operation
instances. And those global operation instances link some component instances.
That is, a global operation model defines some interaction rules, is instantiated
on component instances and allows to dynamically set connections between com-
ponents. A global operation model will be applied to component models already
registered in the megamodel, and its results are new component models that will
have to be put in the megamodel.

The management of the megamodel (megamodelling) sounds like program-
ming where the megamodel plays the role of the execution environment (pro-
gram) [9]. The content of the megamodel is modified by the execution of global
operation execution. Therefore, the megamodel is proposed to dynamic and fre-
quent changes. Such changes may include the introduction of new components ;
the recreation of failed components; the modifications of component interconnec-
tions; the change component operating parameters, etc. A global operation mod-
els corresponds to a set of operations which are executed in response to changes
related to the underlying system state changes. Otherwise these changes have to
leave the megamodel consistent.

Application

In the megamodel, the changes representation are performed through the global
Operation execution. For example at Figs. 3 and 4, we show respectively how
the Merge global Operation is represented in a MOME program and a part of its
execution semantics.



262 E. H. B. Toure et al.

Fig. 3. A MOME program

Fig. 4. A part of the execution semantics of the MOME program



Megamodel Consistency Management at Runtime 263

3.4 Ensuring Correctness of the Megamodel

These changes necessitate to focus on the way the megamodel react after a
change. Hoare Triples allow us to fix this problem by proposing a formal-safe
execution and an execution semantics for each global operation.

The megamodel acts as an execution environment whose instructions are
the global operation executions. A global operation model involves a set of pre-
conditions P, a sequence of operations Seq , and a set of post-conditions Q .

{P}Seq{Q}
The pre-conditions represent a set of states of the system from which a given
sequence of operations can be used.

Possibly each operation may have a side effect which refers to its impact on
other components. Each operation may impact either some component models
or other global operation models.

The post-conditions define a set of states that satisfy the required result after
the execution of a global operation models.

To achieve this, as in previous works [8], we have defined a formal-safe exe-
cution which ensures that execution of a global operation model does not lead
to some inconsistencies in the megamodel. We have also defined an execution
semantic for each global operation model, which means its observable behavior
(its side-effect).

Execution semantic for global operations

For the Merge global operation which allows to integrate T with S through
their data dimension, we define its execution semantic as follows:

Operation Merge: merged ←− Merge(msd,mapd,mtd)

Pre-conditions Post-conditions
P1 :: = msd ∈ M
P2 :: = level(msd, “terminal”)
P3 :: = type(msd, “UML”)
P4 :: = dimension(msd, “data”)
P5 :: = mtd ∈ M
P6 :: = level(mtd, “terminal”)
P7 :: = type(mtd, “UML”)
P8 :: = dimension(mtd, “data”)
P9 :: = mapd ∈ M
P10 :: = merged /∈ M

Q1 :: = msd ∈ M
Q2 :: = level(msd, “terminal”)
Q3 :: = type(msd, “UML”)
Q4 :: = dimension(msd, “data”)
Q5 :: = mtd ∈ M
Q6 :: = level(mtd, “terminal”)
Q7 :: = type(mtd, “UML”)
Q8 :: = dimension(mtd, “data”)
Q9 :: = mapd ∈ M
Q10 :: = merged ∈ M

We have the triplet:
{P} Merge (msd, mapd, mtd) {Q}; where P = ∩Pi and Q = ∩Qi

Similarly, for each global operation model, we define its execution semantic
(Fig. 4).



264 E. H. B. Toure et al.

Setting up a global operation model may lead to the execution of other global
operations, namely its ripple effect. In such cases, often the output of a global
operation model may correspond to the input of another global operation model.

Safe executions of global operations

Before invoking the Merge operation, we have to call at first the global operation
Map with the two model parameters. Indeed the third parameter (map) to Merge
is a morphism describing the elements of msd and mtd that are equivalent and
should be “merged” into a single element mapd in M. Therefore we can note a
logical precedence between some global operations defined in the megamodel. To
consider this, we have to set up a deductive system which enables the deduction
of new theorem from some theorems already proved. A rule of inference takes
the form “If � X and � Y then � Z”, i.e. if assertions of the form X and Y have
been proved as theorems, then Z also is thereby proved as a theorem.

For that we will use two inference rules presented in [10], that is the rule of
consequence and the rule of composition. After that, we present an example in
which these two rules are applied.

(i) Rules of consequence:

If � {P}S{R} and � R ⊃ Q then � {P}S{Q}
If � {P}S{R} and � P ⊂ Q then � {Q}S{R}

(ii) Rule of composition:

If � {P}S1{Q1} and � {Q1}S2{R} then � {P}(S1;S2){R}
� {P}S1{Q1} � {Q1}S2{R}

� {P}(S1;S2){R} global operation

We can define the inference rule for the Merge global operation which enables us
to integrate models.

Application

Considering the previous example. We have to describe an execution of Merge
between the two models, namely msd and mtd. However before invoking the
Merge Operation, it must be necessary to call at first the Map operations. For
that we define an execution semantic of Map.

Operation. Map : mapd ←− Map(msd, mtd)

Pre-conditions Post-conditions

M1 :: = mtd ∈ M

M2 :: = msd ∈ M

M3 :: = mapd /∈ M

M4 :: = type(msd) == type(mtd)

M5 :: = dimension(msd) == dimension(mtd)

N1 :: = mtd ∈ M

N2 :: = msd ∈ M

N3 :: = mapd ∈ M

N4 :: = type(msd) == type(mtd)

N5 :: = dimension(msd) == dimension(mtd)



Megamodel Consistency Management at Runtime 265

We have the triplet:

(i)A1 ←− {M}Map(msd, mtd){N}; where M =∩Mi and N = ∩Ni

Operation. Merge : merged ←− Merge(msd, mapd, mtd)

Pre-conditions Post-conditions

I1 :: = mtd ∈ M

I2 :: = msd ∈ M

I3 :: = mapd ∈ M

I4 :: = merged /∈ M

I5 :: = type(msd) == type(mtd)

I6 :: = dimension(msd) == dimension(mtd)

R1 :: = mtd ∈ M

R2 :: = msd ∈ M

R3 :: = mapd ∈ M

R4 :: = merged ∈ M

R5 :: = type(msd) == type(mtd)

R6 :: = dimension(msd) == dimension(mtd)

We have the triplet: (ii)A2 ←− {I}Merge (msd, mapd, mtd){R}; where I = ∩Ii
and R = ∩Ri

Using the rules of consequence on (i) and (ii) we obtain:

� {M}Map{N} and � I ⊃ N then,� {M}Merge {R}
We have: A3 ←− {M}Merge{R} → (iii)
More formally, using the rules of composition we obtain:

� {M}Map{N} � {I}Merge{R}
� {M}Merge{R} Merge

4 Conclusion

In this paper we have proposed a runtime megamodel to represent a running
software system. The approach uses a megamodel which represents an execution
model of the running system to which it is causally connected. Indeed the meg-
amodel is deployed with the system and used as a basis for model management
and changes representation. Our approach also provides inference rules for rea-
soning about, specifying, and representing change operations. Thereby checking
the megamodel’s consistency by defining a formal-safe execution as well as an
execution semantic for each operation likely to modify the megamodel contents.

References

1. Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young, D.M., Zelesnik, G.: Abstrac-
tions for software architecture and tools to support them. IEEE Trans. Softw. Eng.
21(4), 314–335 (1995)

2. Bislimovska, B.: Textual and content based search in software model repositories
(Doctoral dissertation, Italy) (2014)

3. Bezivin, J., Jouault, F., Valduriez, P.: On the need for megamodels. In: Proceedings
of the 19th Annual ACM Conference on Object Oriented Programming, Systems,
Languages, and Applications, October 2004

4. Vogel, T., Giese, H.: A language for feedback loops in self-adaptive systems: exe-
cutable runtime megamodels. In: The 7th International Symposium on Software
Engineering for Adaptive and Self-managing Systems, pp. 129–138, June 2012



266 E. H. B. Toure et al.

5. Toure, E.B., Fall, I., Bah, A., Camara, M.B. Megamodel-based Management of
Dynamic Tool Integration in Complex Software Systems. In Proceedings of the
Federated Conference on Computer Science and Information Systems (FedCSIS)
(2016)

6. Song, H., Huang, G., Chauvel, F., Sun, Y.: Applying MDE tools at runtime: exper-
iments upon runtime models. In: Models@run.time 10, vol. 641, pp. 25–36 (2010).
CEUR-WS.org

7. Seidewitz, E.: What models mean. IEEE Software, September/October 2003
8. Bousso, M., Sall, O., Thiam, M., Lo, M., Toure, E.H.B.: Ontology change estima-

tion based on axiomatic semantic and entropy measure. In: Signal Image Technol-
ogy and Internet Based Systems (SITIS), pp. 458–465, November 2012

9. Vignaga, A., Jouault, F., Bastarrica, M.C., Brunelière, H.: Typing in model man-
agement. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 197–212. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02408-5 14

10. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–583 (1969)

11. Kramer, J., Magee, J.: The evolving philosophers problem: dynamic change man-
agement. IEEE Trans. Softw. Eng. 16(11), 1293–1306 (1990)

12. Aßmann, U., Bencomo, N., Cheng, B.H., France, R.B.: Models@runtime (Dagstuhl
seminar 11481). Dagstuhl Rep. 1(11), 91–123 (2012)

13. Malakuti, S., Bockisch, C., Aksit, M.: Applying the composition filter model for
runtime verification of multiple-language software. In: 20th International Sympo-
sium on Software Reliability Engineering, pp. 31–40. IEEE, November 2009

http://CEUR-WS.org
https://doi.org/10.1007/978-3-642-02408-5_14

	Megamodel Consistency Management at Runtime
	1 Introduction
	2 Illustrative Example
	3 Our Approach
	3.1 Overview of the Approach
	3.2 The Runtime Megamodel
	3.3 Changes in the Megamodel
	3.4 Ensuring Correctness of the Megamodel

	4 Conclusion
	References


