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Abstract. In this paper, we propose a practical adaptive embedding method-
ology based on Successive Cancellation (SC) polar coding. The new proposed
SC-based Polar Coding Steganography (SC-PCS) defines message bits as frozen
bits of the SC decoder and computes path metrics according to embedding costs
of pixels of the cover image. Simulation results demonstrate that SC-PCS
minimizes an arbitrary embedding distortion while embedding covert message.
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1 Introduction

With the development of internet and diversity of communications media, information
security becomes a necessity and even a priority. To satisfy this demand, techniques
such as cryptography protect information but do not guarantee discretion. However,
often the existence of the communication must be kept secret. Steganography is today
positioned, deservedly, as a means to address this widely shared concern. It is to
conceal secret information in others unsuspected media such as text, image (used in this
paper), audio or video so that only the recipient is aware of the existence of the
communication. The majority of modern steganographic techniques are based on
embedding a secret message while minimizing the embedding distortion [1]. This
approach consists of two complementary tasks that both participate to increase
steganographic security [2]. Most of the proposed methods focus on one of these two
tasks. The first is to effectively define the embedding costs of all the pixels of the cover
image. To design costs several methods are proposed in current state of the art such as
HUGO (Highly Undetectable steGO) [3], WOW (Wavelet Obtained Weights) [4],
UNIWARD (Spatial UNIversal WAvelet Relative Distortion) [5], HILL (HIgh Low
Low) [6], MiPOD (Minimizing the Power of Optimal Detector) [7]. The second task,
that we are interested in, relies on minimizing the distortion defined from costs using
practical coding. For practice, matrix embedding is proposed by Crandall [8]. The first
implementation of matrix embedding was provided by Westfeld [9] who used
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Hamming codes in F5 algorithm. The current state of the art methods includes BCH
(Bose-Chaudhuri-Hocquenghem) [10], RS (Reed Solomon) [11], LDPC (Low Density
Parity Check) [12] and STC (Syndrome Trellis Codes) [13].

Our work is a contribution to methods that use codes to minimize distortion func-
tion. The codes used for this shake are polar codes (PC) introduced by Arikan [14] as the
first capacity-achieving codes. Several decoding types exist for PC such as Successive
Cancellation (SC) [14], SC List (SCL) [15], Linear Programming (LP) [16] and
Adaptive LP (ALP) [17]. PC are demonstrated to be applicable in steganography with
constant profile and wet paper codes [18] and minimize embedding impact [19–21] for
these two important frameworks. The first adaptive embedding method based on polar
codes is proposed in [22], in which ML-certificate ALP decoder is used. The natural
decoding technique of polar code is SC which achieves the rate-distortion bound. These
benefices of polar codes and their optimality to Payload-Limited Sender (PLS) problem
emphasized by Filler et al. [13] motive the use of SC decoding to minimize distortion
function and increase embedding efficiency.

The rest of this paper is organized as follows. In Sect. 2, we present steganography,
distortion function and practical embedding coding techniques. In Sect. 3, we review
polar coding and SC decoding. The proposed steganographic embedding technique
based on SC is described in Sect. 4. Section 5 shows experimental results of the tests.
Conclusions are drawn in Sect. 6.

2 Steganography Based on Minimizing Additive Distortion

2.1 Distortion Definition for Adaptive Embedding

In modern steganography, most of the proposed techniques are based on embedding
secret message while minimizing the embedding distortion between cover x 2 X and
stego y 2 Y ¼ I1 � � � � � In images which can be defined in additive form [13]:

D x; yð Þ ¼
Xn

i¼1 qi x; yið Þ; ð1Þ

where qi x; yið Þ is a local distortion measure and denotes the cost of replacing pixel xi by
yi if digital images are used. In such definition, we assume that the embedding changes
are mutually independent. The additive distortion can be rewritten as follows:

D x; yð Þ ¼
Xn

i¼1 qi � yi 6¼ xi½ �; ð2Þ

where P½ � is the logical operator that is equal to 1 if relation P is true and 0 else. Several
methods exist to calculate the embedding costs. HUGO was the first method proposed
to calculate costs from features vectors difference in SPAM space. WOW and UNI-
WARD use directional filter to design costs. HILL cost function is designed using one
high-pass filter and two low-pass filters. MiPOD is model based and computes costs by
minimizing the power of the most efficient detector.
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2.2 Optimal Embedding Problem and Practical Coding

For message embedding there are two methods: Distortion-Limited Sender (DLS) and
Payload-Limited Sender (PLS) [13]. However, PLS that consists in embedding a fixed
payload while minimizing the embedding distortion, is the most used compared with
DLS that is to maximize payload while introducing an expected distortion. Let the
stego image y be a random variable over Y and its distribution px yð Þ,PrðyjxÞ, the
optimal embedding is realized when replacing each pixel xi with probability px;i:

px;i yið Þ ¼ exp �kqi x; yið Þð ÞP
yi2Ii exp �kqi x; yið Þð Þ ð3Þ

where k 2 0;1½ ½ is a parameter obtained by solving the following constraint

h pxð Þ ¼ �
X

y2Y px yð Þ log2 px yð Þ ¼ m; ð4Þ

where m is the size of the message m 2 M ¼ 0; 1f gm and px yð Þ ¼ Qn
i¼1 px;i yið Þ. The

constraint can be rewritten as follows:

�
Xn

i¼1
X

yi2Ii px;i yið Þ log2 px;i yið Þ ¼ m; ð5Þ

In practice syndrome coding can be used to implement the embedding operation. In
this context, let C be the linear code of length n and dimension n� m and consider
binary embedding operation, then the embedding Emb : X �M! Y and extraction
Ext : Y !M functions, respectively used by the sender and the recipient are

Emb x;mð Þ ¼ argminLSB yð Þ2C mð ÞD x; yð Þ
Ext yð Þ ¼ LSB yð Þ � HT ¼ m;

ð6Þ

where LSB yð Þ ¼ LSB y1ð Þ; . . .; LSB ynð Þð Þ, H 2 0; 1f gm�n is a parity-check matrix and
C mð Þ ¼ fz 2 0; 1f gnjzHT ¼ mg denotes the coset of m. These two functions verify

Ext Emb x;mð Þð Þ ¼ m 8x 2 X ; 8m 2M: ð7Þ

An embedding coding algorithm can be evaluated via its embedding efficiency
e að Þ ¼ m=D ¼ an=D (in bits/distortion unit) in comparison with the optimal embed-
ding derived from (3), where a ¼ m=n is called the relative payload. It is known that
random linear code with syndrome coding is capacity-achieving for the PLS problem.
However, random code is not practical due to the exponential complexity needed for
the decoder. Non-random codes such as Hamming, BCH, RS, LDPC and STC are used
to approach the optimal embedding. Notes that STC is currently the most used. Polar
codes are known to be optimal for PLS problem as pointed out by Filler et al. [13]. Wet
paper codes are used to embed data in a cover image for which some pixels are
forbidden to be altered. Such pixels, called wet pixels, are characterized by infinite cost
qi ¼ 1 and then Ii ¼ xif g. The others, called dry pixels, may be changed and have
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finite cost qi\1. The wet paper framework is an interesting topic in steganography
and is largely addressed in our previous works [19–21].

3 Polar Codes and SC Decoding

3.1 Polar Codes, First Capacity Achieving Codes

Introduced by Arikan [14], Polar Codes (PC) are defined as the first codes that achieve
channel capacity I Wð Þ (Shannon’s threshold) in a large class of channel W with low
encoding and decoding time complexity O nlognð Þ, where n ¼ 2p is the block-length.
PC construction is designed using channel polarization which provides them their
recursive nature. Channel polarization consists in constructing polarized channels
W ið Þ

n : 1� i� n from n independent copies of W . It is made up two steps: channel
combining that associates n copies of W and recursively creates n-inputs channel Wn

and channel splitting that subdivides Wn into n channels W ið Þ
n [19]:

ð8Þ

The main idea of polar coding is to access to each channel W ið Þ
n and send the

information bits across the most reliable ones i.e. with lowest reliability parameter
Z W ið Þ

n

� �
and the frozen (fixed) bits through the remaining channels. The information

and frozen bits indices will be denoted by A and it complementary Ac, respectively. We
denote by ai1 ¼ a1; . . .; aið Þ; 1� i� n, ûi1;e and ûi1;o the sub-vectors consisting of ele-
ments with odd and even indices. The generator matrix is defined from the Kronecker

product G�p2 of p copies of G2 ¼ 1 0
1 1

� �
by Gn ¼ BnG

�p
2 , where Bn the bit-reversal

permutation matrix. The polar encoding is based on the relation c ¼ uGn, where u is the
source word and c the codeword. When traveling through the channel, c can be
changed into a received word r. The transition probability is denoted by W rijcið Þ.

3.2 Successive Cancellation Decoding and Polar Codes

SC decoding is the first and inherent decoding proposed by Arikan for PC. It is
governed by the recursive nature of PC construction. First, the bit û1 is decoded given r.
Then, û2 is given from û1 and r, and so far i.e. ûi is estimated given the previously
decoded bits ûi�11 and the received word r. For frozen bits the value is known ûi ¼ ui.
The aim of SC decoder is to provide estimated source-word û given A, uAc and r.
The SC decoder gives its decision using the following function h:

ûi ,
ui; if i 2 Ac

0 if L ið Þ
n r; ûi�11

� �� 1
1; else

8<
: ; 1� i� n ð9Þ
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where L ið Þ
n r; ûi�11

� � ¼ W ið Þ
n r;ûi�11 j0ð Þ

W ið Þ
n r;ûi�11 j1ð Þ, with L 1ð Þ

1 rið Þ ¼ L rið Þ ¼ W rij0ð Þ
W rij1ð Þ is LR

(Likelihood-Ratio). In LLR domain non-frozen bits are chosen depending on if
LL ið Þ

n r; ûi�11

� �� 0 or not. Figure 1 shows the graph of the SC decoder with n ¼ 8. This
process starts on the right side of the graph where the received word bits LRs L rið Þ are
combined in pairs by moving towards the left side. The graph consists of log n ¼ 3
stages each of which contains n ¼ 8 nodes. For each node of stage j, the LR is
calculated from two incoming LRs La and Lb of stage j� 1 using f or g function:

f La; Lbð Þ ¼ 1þ La � Lb
Laþ Lb

; ð10Þ

and

g La; Lb; ûsumð Þ ¼ gûsum La; Lbð Þ ¼ L 1�2ûsumð Þ
a � Lb ð11Þ

where ûsum is the binary partial sum of previously estimated bits. In LLR domain

f LLa; LLbð Þ ¼ 2 tanh�1 tanh LLa=2ð Þ � tanh LLb=2ð Þð Þ ð12Þ

and

gûsum LLa; LLbð Þ ¼ LLa � �1ð Þûsum þ LLb; ð13Þ

where LLa , log Lað Þ and LLb , log Lbð Þ are LLRs values. The min-sum approxima-
tion, used with LDPC codes, can also be exploited to reduce this complexity:

f LLa; LLbð Þ 	 ~f LLa; LLbð Þ, sign LLað Þ � sign LLbð Þ �min LLaj j; LLbj jð Þ: ð14Þ

At the left side of the graph, estimated bits ûi are provided using function h (9).

Fig. 1. Graph of SC decoding for n ¼ 8.
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The SC decoding can be seen as a code tree search. In this context, it begins at the
root node that has two paths with labels 0 and 1 and metrics W ið Þ

n rj0ð Þ and W ið Þ
n rj1ð Þ,

respectively. Then, the path with highest metric is chosen. This path results, in turn, in
two paths with labels 0 and 1 and metrics W ið Þ

n r; û1j0ð Þ and W ið Þ
n r; û1j1ð Þ. Generally, at

each level ûi is decoded by comparing the two path metrics W ið Þ
n ðr; ûi�11 j0Þ and

W ið Þ
n ðr; ûi�11 j1Þ if i is not a frozen position. If i is a frozen position, ûi ¼ ui. This

procedure continues down to the leaf nodes where the last hard decision is made to
estimate ûn. Notice that SC decoder provides good performance if the bloc length n is
sufficiently large. We will use this decoding technique to define our steganographic
scheme.

4 SC-Based Adaptive Polar Coding Embedding

In channel coding, polar codes are shown to be capacity achieving. Another benefit and
reason why we are interested in polar codes is their optimality for Payload Limited
Sender (PLS) as emphasized out by Filler et al. [13]. Polar code construction in
steganographic context is largely explained in [18]. For simplification purposes, in the
rest of the paper, we will denote by x and y the LSB vectors of the cover and the stego
images, respectively. The practical steganographic embedding using codes is based on
syndrome coding with the extraction constraint yHT ¼ m. We will first investigate the
impact of this relation in the frozen bits values choice when using SC.

4.1 Definition of Secret Message Bits as Frozen Bits

We will show that the Steganographic Polar Coding (SPC) under SC encoding is
equivalent to SC decoding of polar codes in channel coding when uAc ¼ m. Indeed, it is
known from [14] that polar codes are defined in terms of an invertible matrix Gn via the
encoding relation c ¼ uGn i.e. u ¼ cG�1n ¼ cGn, because G�1n ¼ Gn. For the sake of
simplification we denote G ¼ Gn. The source word can be split into two parts
u ¼ uA; uAcð Þ, where the information word uA ¼ ui : i 2 Að Þ and the frozen word uAc ¼
ui : i 2 Acð Þ [23]. Then, we can write u ¼ uA; uAcð Þ ¼ cGA; cGAc� �

where GA and GAc

are the submatrices consisting of columns of G whore indices are in A and Ac,
respectively. From the definition of polar code parity check matrix [16] whose trans-
pose HT is obtained by selecting the columns of G with indices in Ac [18, Lemma 1],
we have GAc ¼ HT with uAc ¼ cHT. Let a source word u such that uAc ¼ m. Then
searching y such that yHT ¼ yGAc ¼ m is equivalent to SC decoding of a polar code
where secret message bits are defined as frozen bits.

In the original SC decoding, given frozen bits uAc , one decodes the source word u
such that there exists a codeword c ¼ uGn ¼ uA; uAcð ÞGn. In the steganographic case,
we have u ¼ uA;mð Þ, y ¼ uGn and yHT ¼ m. Then, we obtain a m –coset polar code
where the stego word y is a code word. Then, naturally, to find the stego word, we can
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use SC polar decoding where frozen bits uAc ¼ m. However, this fact does not affect
the SC decoder performance because it is independent of frozen bits values choice [14].
This decoding technique outputs u rather than the code word. However, we can simply
obtain the m –coset polar codeword y by applying the encoding relation uGn. The next
step is to explain how the LR and LLR-metrics will be calculated.

4.2 Metric Calculation of SC for Steganography

In digital communication the classical SC decoder task is to find the information word
u from the received word r by using metrics calculated from transition probabilities
W receivedjtransmitedð Þ ¼ W rijcið Þ ¼ pe if ri 6¼ ci and W rijcið Þ ¼ 1� pe else, for
Binary Symmetric Channel (BSC), where pe is the error probability. In steganography,
given the cover word x and the secret message m, the sender has to search a stego word
y such that yHT ¼ m. As seen in previous subsection, the decoder does not directly
output the stego word y but gives first an information word u that, encoded with uGn,
provides the searched stego word y. Since that is the stego word we seek, given the
cover word, then transition probabilities in steganography will be denoted by
W coverjstegoð Þ ¼ W xijyið Þ. This can be interpreted as the probability that the corre-
sponding pixel changes (if yi ¼ xi) or not (if yi 6¼ xi i.e. yi ¼ 1� xi). The definition of
W xijyið Þ would verify the conditions of transition probabilities in SC decoding and be
provided depending on the embedding costs qi (cost of replacing pixel xi by yi.).

When all the pixels have the same sensitivity to change qi ¼ 1 (constant profile), all
the transition probability W xijyið Þ ¼ 1=2. Let consider an arbitrary distortion, the idea
is to assign great values of change probabilities W xij1� xið Þ (then small values of
non-change probabilities W xijxið Þ) for pixels with small value of embedding costs and
small change probabilities (then great non-change probabilities) for pixels with great
embedding costs. Then, let

W xijyið Þ ¼ di
1� di

if yi ¼ xi
else

�
; ð15Þ

where di ¼ qi=qmax and qmax is maximum of the costs set. It is easy to verify that this
definition of transition probabilities satisfies the above concerns and, additionally
W xij0ð ÞþW xij1ð Þ ¼ 1 We can condense by:

W xijyið Þ ¼ xi ¼ yi½ �ð Þ dið Þþ xi 6¼ yi½ �ð Þ 1� dið Þ: ð16Þ

The logical operator applied on binary values xi and yi allows rewriting as follows:

W xijyið Þ ¼ 1� xi � yij jð Þ dið Þþ xi � yij jð Þ 1� dið Þ: ð17Þ

After defining W xijyið Þ, we can obtain the transition probabilities corresponding to
polarized channels W ið Þ

n . In steganographic SC decoder, transition probability of
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channel W ið Þ
n denotes the likelihood of ui given the channel outputs (cover x ¼ xn1 and

i� 1 previously decoded bits ui�11 ). They are expressed by [14]:

W ið Þ
n x; ui�11 jui
� � ¼X

uniþ 1

1
2n�1

Wnðxn1jun1Þ
� �

¼
X

uniþ 1

1
2n�1

Yn

i¼1 WðxijyiÞ
� �

: ð18Þ

Unfortunately, this expression is not practical. That is why Arikan defined recursive
formulas, that can be labeled f and g, to calculate these transition probabilities:

W 2i�1ð Þ
n xn1; û

2i�2
1 jû2i�1

� � ¼ f Wa;Wbð Þ ¼
X

û2i2 0;1f g
1
2
Wa �Wb; ð19Þ

and

W 2ið Þ
n xn1; û

2i�1
1 jû2i

� � ¼ g Wa;Wbð Þ ¼ 1
2
Wa �Wb; ð20Þ

where Wa ¼ W ið Þ
n=2 xn=21 ; û2i�21;o 
 û2i�21;e jû2i�1 
 û2i

	 

, Wb ¼ W ið Þ

n=2 xnn=2þ 1; û
2i�2
1;e jû2i

	 

. Let

L ið Þ
n xn1; û

i�1
1

� � ¼ W ið Þ
n xn1;û

i�1
1 j0ð Þ

W ið Þ
n xn1;û

i�1
1 j1ð Þ, then LRs can be recursively calculated using functions

(10) f La; Lbð Þ ¼ L 2i�1ð Þ
n xn1; û

2i�2
1

� �
and (11) gûsum La; Lbð Þ ¼ L 2ið Þ

n xn1; û
2i�1
1

� �
, where La ¼

L ið Þ
n=2 xn=21 ; û2i�21;o 
 û2i�21;e

	 

and Lb ¼ L ið Þ

n=2 xnn=2þ 1; û
2i�2
1;e

	 

. This recursion continue until

the last level LRs of length 1, where the LR calculation is given directly by

L 1ð Þ
1 xið Þ ¼ L xið Þ ¼ W xij0ð Þ

W xij1ð Þ. From (17), the LR is defined by

L xið Þ ¼ W xij0ð Þ
W xij1ð Þ ¼

1� xið Þ dið Þþ xið Þ 1� dið Þ
xið Þ dið Þþ 1� xið Þ 1� dið Þ ¼

di
1�di if xi ¼ 0
1�di
di

if xi ¼ 1

(
: ð21Þ

In logarithmic domain, the Log-Likelihood Ratios (LLR) are defined by

LL xið Þ ¼ log L xið Þð Þ 1� 2xið Þ � log di
1� di

� �
¼ 1� 2xið Þ � log qi

qmax � qi

� �
: ð22Þ

These steganographic frozen bits and the LLRs will be used in the steganographic SC.

4.3 Steganographic Successive Cancellation Algorithm

Once we have given the frozen bits values and the LRs or LLRs (metrics) for the choice
of unfrozen bits, we can implement the SC decoder of polar codes for steganography
which is given by Algorithm 1:
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The running SC-PCS provides the stego medium y uGn that will be transmitted
to the recipient of the secret message. Once the stego medium is received, the recipient
has two ways to find de covert message. Firstly, he can encode the stego medium to
find the source word by u ¼ yGn. Then, he selects uAc ¼ yGnð ÞAc¼ m. The second
alternative is to use the usual matrix relation via the parity check matrix m ¼ yHT. In
this manner, the embedding process provides the stego objet whose syndrome is the
secret message m and minimizing the additive distortion D.

5 Experimental Results

The implementation of the proposed SC-PCS is given by the following steps:

– Construct the used polar code and initialize these parameters;
– Update channel transition probabilities calculated from costs using (17);
– Apply the SC-PCS embedding (Algorithm 1) using LLR path-metrics from (22);

Example 1: Let consider a cover x ¼ 0; 1; 1; 1; 0; 0; 1; 0ð Þ, a secret message m ¼
1; 0; 1; 0ð Þ and the corresponding stego object y. The different steps of the SC-PCS
embedding with a polar code of bloc length n ¼ 8 and dimension k ¼ 4 are:

– When we use the construction method of polar code then, A ¼ 4; 6; 7; 8f g, Ac ¼
1; 2; 3; 5f g and the parity check matrix is:
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H =

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

2
664

3
775 andHT ¼

1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

2
66666666664

3
77777777775

ð23Þ

– Generate randomly an embedding cost q ¼ 39; 57; 8; 6; 54; 78; 94; 13ð Þ, for exam-
ple. In this case, the mean is qmean ¼ 43:6250, the maximum is qmax ¼ 94.

– The channel transition probabilities update in LLR domain provides
LL ¼ �0:3438;�0:4321; 2:3749; 2:6856; 0:3001; 1:5841;�Inf ;�1:8295ð Þ.

– When applying the SC-PCS embedding, the stego objet obtained is y ¼
0; 1; 1; 1; 1; 0; 1; 0ð Þ with distortion function D x; yð Þ ¼ 54. The change object is
e ¼ 0; 0; 0; 0; 1; 0; 0; 0ð Þ.
In this example, the optimal stego medium (corresponds to the one which mini-

mizes distortion function) is obtained by using the SC decoder even with very small
length n ¼ 8. The total embedding distortion is D x; yð Þ ¼ 54.

We will apply our SC-PCS on 512� 512 8-bit gray scale digital images coming
from BOSSbase database version 1:01 (Break Our Stego System) containing 10:000
images of pgm format obtained by rescaling and cropping natural images of various
sizes of eight different cameras. Since the SC decoder performance is good if the bloc
length n is enough large, then we can consider the image entirely i.e. the cover size
n ¼ 512� 512 ¼ 262144 ¼ 218. This value is sufficiently large to provide good per-
formance. Note that, with the existing cost computation methods, often the high costs
crowd into smooth area and low costs in textured area of the image (Fig. 2). Then, after
calculating the costs, we will use the bit-reversal permutation matrix Bn as suggested
and largely explained in [21]. This will scatter the pixels of the cover image and then
increase the success probability of the optimal stego image search.

(a) Cover (b) Stego

Smooth area Textured area

Fig. 2. Cover vs stego images of ‘1013’ from Boss base.
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Figure 2 shows the cover image ‘1013.pgm’ and the corresponding stego image
after embedding a 0:4 bpp (bit per pixel) payload. The secret message is generated in a
random format. The pixels of some smooth areas are located at the bottom of the
images. These pixels will be assigned to very high cost (for example: 1010 in practice).
For the embedding, the images are reshaped in a single vector of size 218 from which
we extract the LSB vector that we make use to apply SC-PCS.

To investigate the performances of our adaptive steganographic scheme we compute
the embedding efficiency embeff ¼ m=D x; yð Þ in comparison with other codes w.r.t
reciprocal relative payload 1=a (Fig. 3).

As shown by Fig. 3, SC-PSC provides similar performance that ALP-PCS [22] and
better performance than Hamming and STC but for a ¼ 1=2 it is lower that STC’s.
Notice that this result is not surprising and could be better if we are referred to the
theoretical results given in the literature about polar codes (capacity-achieving) when
applied in PLS problem as emphasized in [13].

6 Conclusion

In modern adaptive steganographic scheme, there are two levers on which one could
emphasis to increase the security of stego-system. Either focus on designing distortion
measure (embedding costs), or concentrate on defining a near optimal embedding
coding scheme. We have opted for the second option and have proposed, in this paper,
a practical and efficient embedding method based SC polar coding. Indeed, as shown
by the test results and the practical examples, this SC-PCS scheme minimizes arbitrary
additive distortion function properly defined and provides better performance than
STC. The main advantage of SC compared to ALP is that it always provides a valid
stego medium. The simulation results show the good performance of polar codes in
terms of embedding efficiency. Additionally, since SC is the natural and basic decoding
technique of polar code, it is important to design steganographic embedding scheme

Fig. 3. Embedding efficiency of the steganographic SC polar decoder SC_PCS.
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based on it. This allows future improvements if others decoding methods based on SC
are improved.

The application of SC algorithm in steganography opens interesting perspective to
improve further the embedding efficiency and move closer the optimal bound. Then,
we plan to use the list version of SC called SCL [15] albeit more complex than SC.
Other perspectives are to adapt the SC-PCS in JPEG domain and in non-binary
embedding operation with multilayered construction.
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