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Abstract. Senegal has a great solar potential, so it could be used to shift from a
diesel-based power generation to cheaper renewable energy resources. To
exploit this inexhaustible natural resource, the global horizontal irradiation
remains one of the key parameters for any solar energy project at a given
location. This work establishes a multiple linear regression approach to estimate
the solar radiation in the Senegalese territories using the information of the
global network of weather geostationary satellites (Meteosat and GOES),
satellites database and the ground measurement data available in the website of
the World Radiation Data Center (WRDC) as inputs to the model. Jointly a set
of multivariate regression models, a statistical analysis between Meteonorm data
and outputs of different linear combinations are presented in this work, which
also gives the opportunity to appreciate the precision and consistency of each
solar radiation model on different locations in the study area.
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1 Introduction

Senegal, like sub-Saharan countries, presents a significant energy supply gap charac-
terized by scarcity of petroleum in this part of the sub-region to which is added the
constant fluctuations in the price per barrel. Moreover the production equipment aging
electric power whose fuel is the dominant one represents a constraint to remedy the
inadequate supply to energy demand. For example, in 2000 only 5% of rural house-
holds are connected on the national electrical network (Youm et al. 2000). Although
nowadays there is a progress in this sector and most of villages in Senegal are
unconnected to the national network.

Taking into account what has been stated, the policy orientation toward the
strengthening of our production systems becomes a challenge that must be tackled in
order to satisfy the distribution of electricity in quality and quantity to the population.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
C. M. F. Kebe et al. (Eds.): InterSol 2017/CNRIA 2017, LNICST 204, pp. 3-15, 2018.
https://doi.org/10.1007/978-3-319-72965-7_1



4 O. Wane et al.

Nevertheless for the realization/execution of solar energy conversion projects in a
country or region, it is necessary to collect full information on solar resources. This
information on the solar resource facilitates decision-making on different technologies
that can be used locally or regionally, as well as to the investments needed for its
realization. Therefore, the geographical assessment of the solar resource analysis is
without doubt the first step in the deployment of development strategies of solar energy
in a particular region.

As much as the study area is deprived of radiometric stations with good spatial
coverage, it remains interesting to use an appropriate methodology for estimating solar
radiation. Consequently, the solar radiation derived from satellite images is an
advanced methodology widely used that offers high reliability and accuracy estimates
(Amillo et al. 2014; Rigollier et al. 2004). Nowadays the estimation methods using
information from meteorological satellites and/or spatial interpolation are typical when
determining the value of solar radiation in a pixel of a rasterized geographic region
(Amillo et al. 2014; Perez et al. 1997; Posselt et al. 2014; Rigollier et al. 2004). They
found out that is the basis of such web applications PVGIS (Photovoltaic Geographical
Information System) and Meteonorm offering solar radiation data and other meteoro-
logical parameters (Perpifia Castillo et al. 2016). Siri et al. (2007) present an analysis
and mapping of the potential for solar electricity in Europe producible using a model of
solar radiation and climate data available on PVGIS (Suri et al. 2007). In addition if the
estimation model has input data from different sources including in situ data available,
these will help consolidate the mathematical approach to estimate solar radiation
(Lefevre et al. 2007; Zarzalejo et al. 2009).

2 Study Area

With a Sahelian climate, Senegal is between 12° and 17° north latitude and 11° and 18°
west longitude. From a general point of view, the country has two seasons: a rainy
season and a dry season. Both transitions to go from one season to another are hardly
noticeable. This reflects the consideration of these two seasons in this part of the earth.
The winter or rainy season that begins in southern of the country in May, gradually
spread over the territory between May and October with a peak in August. However, a
great disparity was noted with less precipitation in the northern part, a climate like
BWh, compared to the southern which is the tropical climate (Aw) with a dry winter
(Kottek et al. 2006). Between November and April the country is watered by conti-
nental trade winds, it is the dry season.

The highest temperatures were recorded during the rainy season and in the north
east area. They decrease as and as we approach the coastal areas. The lowest values
were observed in January and February.

Except for the Southern region with some rugged terrain whose altitude does not
exceed 581 m at the highest point of the foothills of the Fouta Djallon (Guinea), the
topography of the Senegalese territory is more or less flat and does not rise above
130 m.
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3 Multivariate Regression Model

In general, a regression model consists to study, analyse and interpret the relationship
between a dataset (¥) called dependent or response variable and an independent or
explicative variable (X) through a linear function defined by Y = aX + b, where a and
b are real constants (Nufiez et al. 2011). Instead of correlating an independent variable
with another dependent variable, the multiple regression model allows to express the
dependent variable from a linear combination of two or more independent variables.
Thus one of the goals of multivariate regression analysis is to find the correlation
coefficients or real constants appropriate to explain relevant aspects between the
dependent variable and the set of independent variables (Montgomery and Runger
2003; Nufiez et al. 2011). These coefficients weighted independent variables are then
used to fit the model. The dependent variable is the parameter to be modelled.

The starting hypothesis model of multivariate linear regression associates the
dependent variable to a linear combination of p independent variables weighted by

coefficients (af(i )) plus a random perturbation ().

. p N .
J0 <o) + 3 ax0) 2 0
k=1

Where y<i) is the i-th dependent variable (i = 1,2,...,n) and x,@ is the i-th obser-
vation of k-th independent variable (k = 1,2,...,p) with p <n.

Each coefficient regression a](:) reflects the contribution of the variable x,((') in the
response y. £() measures the effect of all the variables not included in the model that
affect the response variable. For a given observation, this term is achieved by calcu-
lating the difference between the observation on the dependent variable and the cor-
responding estimated value. In addition to the initial hypothesis and an inference in our
model the following hypothesis is established (Zarzalejo 2005):

— The number of observations (n) must be greater than the number of explicative
variables (p). In other words, if too many independent variables are included in a
model it is very likely that the regression coefficients are biased in the direction
opposite to the null hypothesis (Hy below) (Nufiez et al. 2011).

— The same as the response variables, the forecast errors are independent between
them. The errors are null hope E [s(i)] = 0: The random perturbation has on average
0. Otherwise, the expected value of the respond variable is only a function of
regression coefficients and explicative variables.

— The distribution of errors follow a normal law of mean equal to zero. It is also
assumed which is the case for the distribution of the response variables.

— The error variance is constant and doesn’t depend on the independent variables.
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From the (Eq. 1), we have the traditional model of simple linear regression:
Y=Xa+e (2)

Where a is the vector of the regression coefficients, ¢ is the vector of random
perturbations and Y is dependent variable. X is the matrix of independent variables.

The regression coefficient matrix is an indicator of the contribution of each
explicative variable in the model. However, the regression coefficients are influenced
by factors such as variance and linearity of the explicative variables. The variance is a
measure of dispersion of the variables in question. Therefore the determination of the
optimal regression coefficients leads to study and analyse the perturbations (errors) of
the model. Hence, the idea is to minimize the errors. Otherwise one seeks to minimize
the distance between the values of the dependent variable and predicted values. This
will be done by finding the solution of the equation that minimizes the sum of per-
turbations (€) using the method of least squares.

4 Data

Some studies like Obrecht in 1990, Ba and Nicholson in 2001 and Diabaté et al. in
2004 estimated/mapped the solar radiation in Africa using satellites data and available
pyranometers data (Ba and Nicholson 2001; Diabaté et al. 2004; Obrecht et al. 1990).
The problem they faced and which is continuing to recurrent, is the scarcity of radiation
stations in parts of the continent to validate their mapping of solar radiation studies
using satellite information. The lack of ground measurement solar radiation data with
good spatial coverage and over a sufficiently long period on the sub-region, leads us to
work with satellite data and reduced ground data available in situ. Even if the data
exist, they aren’t often over a sufficiently long period or in a nearby present. Besides, it
will add the possibility of non-coincidence between the field data and satellite infor-
mation like in (Diabaté et al. 2004).

4.1 Ground Data

In our study a total of 10 World Radiation Data Center (WRDC) ground stations
identified in Senegal are used for modelling the monthly average of global horizontal
irradiation (GHI). The WRDC, sponsored by the World Meteorological Organization
(WMO), collects and archives radiometric data around the world to ensure the avail-
ability of these data for research by the international scientific community. The WRDC
is one of the world or national data centers with as much radiometric ground stations in
the Senegalese territories. The selected recording period for this work ranges between
1984 and 1991 and is far from completed for these stations identified in Senegal
(Table 1). The same locations are used for a set of training points to download the GHI
from other and following databases used in this work.

The time series of global horizontal irradiation are measured using thermoelectric
pyranometer Kipp & Zonen CM5 model (WRDC 2016). This solar radiation value is
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Table 1. Details of the 10 WRDC stations using as well as possible to get the maximum solar
radiation information on the extent of the Senegal. These geo-locations have been used as the
training points for downloading solar radiation data from various databases.

Station name | Code |Lat. (°) | Long. (°) | Elev. (m) | Years of the measurements
Bambey 616411 |14.42 |—16.28 20 1984-1988
Dakar/Yoff | 616410 |14.44 |—-17.3 27 1984; 1986-1991
Kédougou 616990 | 12.34 | —12.34 | 178 1988-1990
Linguere 616270 |15.23 | —-15.07 20 1984; 1986-1991
Louga 6161211537 | —16.13 38 1985; 1989-1991
Matam 616300 | 15.39 | —13.15 15 1984-1991
Nioro du Rip | 616871 | 13.44 |—1547 18 1988-1991
Podor 616120 [ 16.39 | —14.58 6 1985-1991
Tambacounda | 616870 | 13.46 | —13.41 49 1984-1987
Ziguinchor 616950 | 12.33 | —16.16 26 1986-1991

the monthly average of the sum of the energy of solar radiation that reaches one square
meter in a horizontal surface in a day (GHI) and is given in J/cm?. For the remainder of
this work the data are converted in Wh/m?/day and represent the dependent variable for
the multivariate regressive model.

4.2 Satellites Data

In each of these ten stations identified in the Fig. 1, we also got the global solar
radiation from the NASA-SSE database with monthly average incident data on the
surface of the earth time series between 1984 and 2004 (NASA-SSE 2016). The same
has been done with the web applications such as PVGIS that provides monthly values.
Indeed, PVGIS offers two solar radiation values: a solar radiation calculated from the
Helioclim database and the other using the CMSAF data (PVGIS 2016). The monthly
average of the sum of GHI estimations from satellite images (GOES and Meteosat)
provided by CMSAF, Climate Monitoring Satellite Application Facility between 1998
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Fig. 1. WRDC Station locations identified in Senegal
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and 2005 and June 2006—Dec. 2011, Helioclim between 1985 and 2005 (Huld et al.
2012; PVGIS 2016). These datasets represent the sets of independent variables for
modelling the solar radiation.

PVGIS: The PVGIS (Photovoltaic Geographical Information System) is a web appli-
cation that provides climate data and tools needed to assess performance of photo-
voltaic systems (PV) in Europe, Africa and southwest Asia (PVGIS 2016).

NASA-SSE: National Aeronautics and Spatial Administration - Surface meteorology
and Solar Energy is a renewable energy resource website developed under project
POWER (Prediction of Worldwide Energy Resource) piloted by NASA (NASA-SSE
2016).

4.3 Focus on the Inputs Data

All the data used in this study have been downloaded into a format file that were
unusable directly. So, it was only possible to display the data on the computer screen
when accessing website and introducing the geographical coordinates of the training
point. From there, these data were collected manually and it is likely to induce some
error. In addition, one of the obstacles is the non-coincidence of this time series.

All inputs data are measured in Wh/m*/day and referred to as monthly average of
the sum of global solar radiation energy that hits one square meter on a horizontal
surface in one day.

The rest of databases provides a unique monthly value for each month. So, we are
left with an established database from five sources listed above. This allows us to have
five different monthly average solar radiation values for each of these ten geo-locations
(Fig. 1). As follows, the data of each database in a given location represent a variable
with 120 observations: it’s the annual period (10 stations, 12 months) for modelling the
monthly average of the sum of the global solar radiation. Nevertheless a seasonal
separation for the datasets had been made also according to the dry and rainy seasons.
In framework of our study, the rainy and dry season correspond respectively to the
months from May to October and November to April.

This separation of inputs data are used in the Eq. (1) according to the different
linear combinations possible:

Model 1: Ywrpc = ap +a; - XcMsaF + @2 - XHelioclim + 3 - XNASA 1 €1 (3)
Model 2 : Ywrpc = bg + by - Xemsar + bz - Xnelioclim + €2 (4)
Model 3 : Ywrpc = €o + €1 - Xcmsar + €2 - Xnasa + €3 (5)
Model 4 : Ywrpc = do + di * XHelioclim + d2 - XNasA + € (6)

Where Ywrpc represent the dataset of solar radiation obtained from WRDC and X;
is the dataset corresponding to the i database, with i = {CMSAF, Helioclim, NASA}.
To validate the estimated dataset, the Meteonorm data are used. Meteonorm offers
access to accurate meteorological for any place on Earth (METEOTEST 2016).



A Multivariate Regression Model 9

The Meteonorm database stands out among the various sources used as part of this
work. In Meteonorm, several different international databases (ground stations and
satellite data) are included, checked for ensuring reliability and forming a single
comprehensive database permitting worldwide simulation of solar energy systems,
buildings and environmental simulations (Remund et al. 2015). This choice was also
motivated by the fact that Meteonorm uses the same weather stations WRDC identified
above. The irradiance downloaded from Meteonorm for the same training points in the
Fig. 1 is a monthly mean hourly global horizontal solar radiation and is given in W/m>.
This data converted in Wh/m?*/day.

5 Validation Model

One of the steps after the determination of the regression coefficients is to evaluate the
contribution of each regression coefficient, following the hypotheses listed below:

- HO :a =a=...=a,=0. In other words, there is no contribution of any
independent variable in the response. If this hypothesis is true, the model spells:
y(l) = a(()]> + g(i)_

— HI1: a, # 0. That s, at least one of the independent variables (explicative) makes a
contribution.

The idea is to see whether the addition of a variable as the result of other variables
in the regression model makes a significant contribution to the proportion of variance
due to regression. For this, we use the theoretical distribution statistics: the test of
Fisher for testing the model in its entirety or the student test to see the contribution of
each estimator. The Fisher statistic or the Student is an analysis of the variance of the
variables by calculating a probability distribution obeying a normal distribution. Under
the null hypothesis and the hypothesis of independence, the ratio of means squares
regression of the variance and the residual variance, defined as F);, follows a Fisher
distribution with p and [n — (p + 1)] degrees of freedom:

(atXlY - nY2) /p
Fu = (YtY — atXtY)/[n — (p+ 1)] NFp,n—(p+1) (7)

Where (a’X'Y — n¥?) and (Y'Y — a@'X'Y) represent matrix form of the expression of
regression Sum of squared (SSR) and sum of squared errors (SSE), respectively.
Fyn_(p+1) is the tabulated Fisher distribution function. Thus the critical value (p-value)
of Fy is defined as the probability that F,,_ 4 1) is superior to Fy:

p — value = P(F,, ,_(, 4 1) > Fum) (8)
When Fy; > p-value, the null hypothesis (HO) is rejected. At least one of the inde-

pendent variables makes a significant contribution to the response. This is leading to
study the contribution of each independent variable.
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With the student distribution, the test focuses on the contribution of each inde-
pendent variable. Under the normality hypothesis of the distribution of response
variables, the sampling distribution of a regression coefficient, a; for example, is that of
a normal distribution whose variance is s*>(a;) and the mean is equal to the expected
value of so-called coefficient. The comparison of this expected value to the estimated
value defined by t, follows the student Statistics with [n — (p + 1)] degrees of freedom
and (o) significance level:

hr = ﬁk — ag
M s(a)

Ntoc/Z,(nfpfl) (9)

Where, a; is the k-th estimator of the matrix of regression coefficients, a; is the
expected value of the k-th estimator, ty/; (n—p-1) is given by the t-student table and
s(ax) is the square root of the k-th diagonal term of the matrix of covariance,
SSE/(n—p—1)- (x'x)"".

The significance level represents the region where the values are not compatible
with the null hypothesis. For example, to evaluate the contribution of the k-th esti-
mator, we simply need to apply the null hypothesis (HO) for this estimator, i.e. ax = 0
or the mean value of the distribution is zero. Unlike the fisher statistics, it is possible to
obtain the p-value (critical value) and the confidence interval at a desired significance
level (o) for each estimator. In the study we choose a threshold of 0.05 for the
significance level for the bounds. In other word, the confidence level for the bounds is
95%. The same analysis previously done with the Fisher statistic is used here to
calculate the critical value of each estimator. For a given estimator, this critical value
represents the probability that t,/, (»_p—1) is superior to t of the corresponding esti-
mator. The confidence bound defines the area of acceptance or rejection of the null
hypothesis. This range is defined by:

a £ ty2, (np-1) (10)
The null hypothesis is rejected when:
M < = ty2 (n—p—1) OT IM > ty/2 (n—p—1)- In other words P(t,/> n—p—1) >tm) <0,05

In order to evaluate the proposed models in its entirety, we use the classical
estimators as Mean Bias Error (MBE) and Root Mean Square Error (RMSE). The
combination of the bias and precision is statistical indicator that defines the perfor-
mance of an estimator. The MBE evaluates the systematic error in the estimation
(Zarzalejo 2005; Walther and Moore 2005). The MBE and RMSE are given by the
following expressions (Walther and Moore 2005):

n o)yl
MBE:Z% (11)
i=1
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. 2
n ()A/(l) — y(1)>
RMSE = - 7 (12)
i=1 n
Where y<i) is the Meteonorm data, §/<i) is the estimated solar radiation data and n
represents the dimension of the dataset.

6 Results and Discussion

The regression coefficients and the evaluation parameters of these estimators constituted
by the standard deviation, confidence interval, F (Fisher) and t (Student) statistic, and
p-value of these estimators are illustrated in this table. Due to the annual and seasonal
separation of data, each linear combination or multivariate regression model are tested
three times thus allowing to compare the results for a better estimation of solar radiation.

The statistical analysis between the solar radiation outputs models and Meteonorm
data, separated the dataset into annual and seasonal period included in spatially dis-
tributed. As the objective is to have a high coefficient of determination with a smallest
bias and a good accuracy, it becomes difficult to conform from one model to another or
if the model would sealed to choose the right period of analysis. The conclusion on the
choice of a model might be the right method to estimate solar radiation in our study can
be supported by scientific reasoning on the probability estimators according to the
critical value (p-value) of the estimators (correlation coefficients) and the statistical
parameter listed above. A p-value less than 0.05 is generally accepted as the threshold
where the null hypothesis is rejected and at least one independent variable or the
independent variable in question brings significant contribution to the model. From the
above, Table 2 summarizing the statistical analysis of the estimators of models we can
note that none of the cases studied has a p-value less than 0.05 for all these estimators.
This reflects that some variables whose p-value less than 0.05 don’t make a significant
contribution to the response. The correlation of outputs model with Meteonorm data
illustrated in the following table and figures confirm what has been found about the
choice of a models with regard to others (Fig. 2).

With the corresponding period from November to April or dry season, the corre-
lation results of the outputs M1 model with Meteonorm data gives a RMSE of the order
of 11.49% with 10.74% distortion error and a coefficient of determination of 0.99.
Comparing these results with those obtained from other linear combinations for the
same period of separation of data (dry season), the model M1 has more inaccuracy and
distortion of a higher error than others. Because each of the other models (M2, M3 and
M4) have a much lower MBE with a value of approximately —1.94% identical to M2,
M3 and M4. The RMSE of each these three is ranging from 7.35% to 7.76% (see
Table 3). Thus, for the dry season the M3 model which uses as NASA-SSE data inputs
and PVGIS-CMSAF is more suitable than others for the assessment of horizontal
global solar radiation on a monthly average.

To evaluate the most ideal model for the rainy season, the same difference noted
earlier with the statistical parameters with the dry period is more or less observed for
the period corresponding to the month storm. Except the first linear combination,
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Table 2. Statistical analysis of the models M1, M3 and M4 according to the annual period, dry
seasonal and rainy seasonal, respectively.

Parm. ‘ Coef. ‘ SD ‘ Inf. bound | Sup. bound ‘ M | p-value
Model N° 1 (M1): Annual period

ag 1264,86 | 387,68 | 497.32 2032.93 3,26 |0,0015
a; 0,57 0,13 [0.32 0.82 4,56 | 0,0000
a, -0,18 0,12 |-0.41 0.056 -1,50 | 0,1400
Fy = 40,43 p-value = 0,0000
Model N° 3 (M3): Dry season
co 804,08 |485,55|—168.09 |1776.26 1,66 |0,1030
c1 0,63 0,18 0.28 0.98 3,56 |0,0008
cs 0,11 0,19 |-0.27 0.48 0,56 |0,5767
Fy = 41.87 p-value = 0,0000
Model N°4 (M4): Rainy season
dy 2468,45 583,21 1301.52 |3637.38 4,23 | 0,0000
d, 0,64 0,15 [0.34 0.95 4,26 |0,0000
d> -0,15 0,11 -0.37 0.08 —1,28 | 0,2061
Fy = 14.65 p-value = 0,0000

Annual period Dry seasonal Rainy seasonal
Model N° 1.
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Fig. 2. Results of the linear correlation of the models M1, M3 and M4
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Table 3. Linear correlations coefficient between the estimated values for the different models
and the Meteonorm data.

Model | Linear combinaison Period | MBE (%) | RMSE (%)
Ml GHI = f(CMSAF, Helioclim, NASA) | Annual | —1.37 6.50
Rainy | —6.26 7.65
Dry —10.74 11.49
M2 | GHI = f(NASA, Helioclim) Annual | —1.37 6.93
Rainy | —0.85 5.76
Dry —1.94 7.76
M3 GHI = f(NASA, CMSAF) Annual | —1.37 6.52
Rainy | —0.85 5.20
Dry —1.94 7.35
M4 | GHI = f(CMSAF, Helioclim) Annual | —1.37 6.99
Rainy | —0.85 5.20
Dry —1.94 7.48

whose bias is —6.65% with quadratic error of 7.65%, the MBE is approximately equal
to —0.85% M2, M3 and M4 with a RMSE of 5.76% M2 and 5.20% for M3 and M4. In
addition, when comparing the coefficients of determination of these different models,
we can observed that the M4 remains the most adequate to evaluate the solar radiation
during the rainy season.

In an analysis based on annual period, a slight difference was noted compared to the
values of the statistical parameters calculated when switching from one model to
another. For this period of separation of data, MBE is the same for all models and their
value is equal to —1.37% for all considered models. The determination coefficients are
between 0.68 and 0.73 and the root mean square errors vary from 6.50% up to 6.99%.
In conclusion, the model M1 is the most suitable choice for the estimation of solar
radiation without distinction on the dry and rainy seasons.

7 Conclusions

The vulnerability of energy supply systems in sub-Saharan Africa is an obstacle to
development that must be addressed to ensure energy security in the region. The energy
mix is an alternative to offer a qualitative and quantitative supply of electricity to the
population. Renewable energy technologies are a way to reach this energy mix. The
main advantages of the use of renewable energies are the diversification of energy
supply, the use of new production and distribution of energy, which ensures the
competitiveness of the Senegalese electrical system, and minimize the impact on
environment.

From satellite data and ground data, the monthly mean of the sum of solar radiation
energy that reaches a square meter on a horizontal plane in a day has been studied for
estimating the solar resource in a geographical point in Senegal necessary for all solar
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energy project at national level. For example, it is necessary to have a good number of
measuring stations or training points with a good spatial distribution in the study area to
develop a map of solar energy potential. The constraints related to the radiometric data
from available weather stations in the country made the interest of our research project.
This linear combination of satellite and ground data is important to elaborate a Typical
Meteorological Years (TMYs) in the future solar energy systems studies. The need for
a meteorological data base represents an advance in the field of assessing solar resource
on the extent of Senegalese territories. Such a study can serve as a scientific contri-
bution or reference for future projects to install photovoltaic or solar thermal power
plants.
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supervising this work, not forgetting the Spanish Cooperation Agency (AECID) for financing of
my stay at this research center.
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