
Tree-LSTM Guided Attention Pooling
of DCNN for Semantic Sentence Modeling

Liu Chen1,3(&), Guangping Zeng1,3, Qingchuan Zhang2,3,
and Xingyu Chen1,3

1 School of Computer and Communication Engineering,
University of Science and Technology Beijing, Beijing, China

chenliueve@163.com, zgp@ustb.edu.cn, cscserer@sina.com
2 School of Computer and Information Engineering,

Beijing Technology and Business University, Beijing, China
zqc1982@126.com

3 Beijing Key Laboratory of Knowledge Engineering for Materials Science,
Beijing, China

Abstract. The ability to explicitly represent sentences is central to natural
language processing. Convolutional neural network (CNN), recurrent neural
network and recursive neural networks are mainstream architectures. We intro-
duce a novel structure to combine the strength of them for semantic modelling of
sentences. Sentence representations are generated by Dynamic CNN (DCNN, a
variant of CNN). At pooling stage, attention pooling is adopted to capture most
significant information with the guide of Tree-LSTM (a variant of Recurrent NN)
sentence representations. Comprehensive information is extracted by the pooling
scheme and the combination of the convolutional layer and the tree long-short
term memory. We evaluate the model on sentiment classification task. Experi-
ment results show that utilization of the given structures and combination of
Tree-LSTM and DCNN outperforms both Tree-LSTM and DCNN and achieves
outstanding performance.

Keywords: Dynamic Convolutional Neural Network (CNN)
Tree-Structured Long-Short Term Memory (Tree-LSTM)
Attention Pooling � Semantic Sentence Modeling

1 Introduction

The sentence modelling problem is an essential component of natural language pro-
cessing (NLP) and has drawn mass attention recently. The objective of sentence
modelling is to analyze and represent the semantic content of a sentence for purposes of
sentiment analysis, document summarization, machine translation, discourse analysis,
etc. [1]. Sentence features, the key of sentence modeling, are usually extracted from
features of word representations.

With advances in word vector representation [2, 3], word vectors become a com-
mon practice of word representation for classification. Vector representations of words
can even preserve the semantic relationship [4]. In the vector space, words with similar
semantics lie close in Euclidean or cosine distance.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
K. Long et al. (Eds.): 5GWN 2017, LNICST 211, pp. 52–59, 2018.
https://doi.org/10.1007/978-3-319-72823-0_6



Recently, neural network methods have achieved outstanding performance namely
recursive neural networks (Recursive NN) [5], recurrent neural networks (Recurrent
NN) [6] and convolutional neural networks (CNN) [7].

The recursive neural networks of [5, 8, 9] rely on syntactic parse trees and recur-
sively compose sentence representation from child nodes in the parse tree. The learning
performance of recursive neural networks depends much on the construction of the
textual tree which can be quite time-consuming.

The recurrent neural networks of [10, 11] compose word vectors from one end to the
other stores the information of all previous contexts in a fixed-sized hidden layer. RNNs
with Long Short-Term Memory (LSTM) units [12] have re-emerged as a popular
architecture due to their representational power and effectiveness at dealing with van-
ishing gradient problem and capturing long-term dependencies. Studies of [12, 13]
proposed an improved variant of Recurrent NN which integrate Recursive NNs by
feeding syntactic parse tree into LSTM.

CNN was originally proposed in computer vision [14], and recently it becomes
popular in NLP tasks. Different from Recursive and Recurrent NNs, CNN encodes word
vectors by convolution operation and generates a fixed-sized high-level representation by
pooling. [7] proposed a Dynamic Convolutional Neural Network (DCNN) with multiple
layers of convolutional and dynamic pooling operations which handles input sentences of
varying length and forms feature maps which is capable of explicitly capturing syntactic
or semantic relations between nonconsecutive parts within the input sentence.

In this paper, we introduce an attention pooling dynamic CNN architecture (ab-
breviated to AP-DCNN) to combine the benefits of CNN, Recursive and Recurrent
NNs with attention pooling schema. The AP-DCNN can be considered a variant of
APCNN in [15] where the attention pooling scheme is proposed. The Tree-LSTM
model [16] is employed to enhance the information extraction capability of the pooling
layer. The Tree-LSTM model is also concatenated with the convolutional structure to
extract comprehensive information, namely historical, future and local context infor-
mation, of any position in a sequence at the testing phase.

We conduct experiments on sentiment analysis task of Stanford Treebank Datasets
and results show that utilization of the given structures and combination of Tree-LSTM
and DCNN leads to better performance.

2 The Proposed AP-DCNN Model

The architecture of the AP-DCNN model is shown in Fig. 1. The following subsections
describe the proposed model in detail.

2.1 Word Embedding

The input of the model is N sentences with variable lengths. Each sentence S is con-
stituted by words which are represented by vectors. Recent researches have demon-
strated that continuous word representation is a popular and powerful method for
sentence classification tasks. A word vector can be formed as follows:

Tree-LSTM Guided Attention Pooling of DCNN 53



x ¼ Wp; ð1Þ

where p 2 R
V is a one-hot vector where the position theword appears is 1while the others

are 0, W 2 R
d�V is a word-representation matrix, in which the i th column is the vector

representation of the i th word in the vocabulary, and V denotes the vocabulary size.
We adopt the publicly available word2vec vectors as initial word embedding

matrices to make adequately use of semantic and grammatical associations of words.
The vectors, with dimension of 300, are trained on 100 billion words from the Google
News by using the continuous bag-of-words method [3] and maximizing the average
log probability of all the words [17]. Words not present in the set of pre-trained words
are initialized randomly.

Fig. 1. Architecture of AP-DCNN. Convolution filters perform convolutions on the input
sentence matrix to generate local Sentence representations. An attention pooling scheme is used
to integrate local representations into the final sentence representation with attention weights.
These weights are composed by comparing local representations with Tree-LSTM based
sentence representation by position and optimized during the training phase.

54 L. Chen et al.



2.2 DCNN Based Sentence Representation

Convolutional layers play significant roles in the success of the CNN because they can
encode significant information contained in input data with significantly fewer
parameters than other deep learning architectures. We adopt the Dynamic Convolu-
tional Neural Network (DCNN) for the semantic modelling of sentences. The network
uses Dynamic k-Max Pooling [7], a global pooling operation over linear sequences.
The network handles input sentences of varying length and induces a feature graph
over the sentence which is capable of explicitly capturing short and long-range
relations.

The convolution operation at layer l is conducted between kl filters WT
l 2 R

md�kl

and a concatenation vector cl�1i:iþm�1 which represents a window of m features starting
from the ith feature in the feature maps conducted in the last layer while l ¼ 1 repre-
sents the word embedding in the origin sentence.

The term d is the dimension of word embedding. Multiple filters with differently
initialized weights are used to improve the model’s learning capability.

The number of filters ktop is determined using cross-validation and the convolution
operation is governed by:

cli ¼ g WT
l cl�1i:iþm�1 þ bl

� � 2 R
kl ; ð2Þ

where kl denotes the number of filters in the current convolutional layer l, using:

kl ¼ max ktop;
L� l
L

T

� �� �
; ð3Þ

where L is the total number of convolutional layers in the network.
Following the approach in [4, 18], we also use filters with varying convolution

window sizes to form parallel DCNNs so that they can learn multiple types of
embedding of local regions so as to complement each other to improve model accuracy.
Sentence representations produced by all the distinct DCNNs are concatenated to form
the final feature vector as an input to the top SoftMax classifier.

2.3 Tree-LSTM Based Sentence Representation

Tree-LSTM is a variant of LSTM. A Tree-LSTM unit (indexed by j) contains input and
output gates ij and oj, a memory cell cj and hidden state hj as a standard LSTM do,
while contains one forget gate fjk for each child k, which is the difference. This allows
the Tree-LSTM unit to selectively incorporate information from each child.
A Tree-LSTM unit at each node takes an input word vector xj which depends on the
tree structure used for the network. Given a tree, let C jð ÞK denote the set of K children
of node j. The transition proceeds as follows:

Tree-LSTM Guided Attention Pooling of DCNN 55



ij ¼ r W ið Þxj þ
X

k2C jð ÞK U
ið Þ
k hjk þ b ið Þ

� 	
; ð4Þ

fjk ¼ r W fð Þxj þ
X

l2C jð ÞK U
ið Þ
kl hjl þ b fð Þ

� 	
; ð5Þ

oj ¼ r W oð Þxj þ
X

k2C jð ÞK U
oð Þ
k hjk þ b oð Þ

� 	
; ð6Þ

uj ¼ tanh W uð Þxj þ
X

k2C jð ÞK U
uð Þ
k hjk þ b uð Þ

� 	
; ð7Þ

cj ¼ ij � uj þ
X

k2C jð ÞK fjk � ck; ð8Þ

hj ¼ oj � tanh cj
� �

; ð9Þ

where in Eq. (5), k 2 C jð ÞK .
We use binary tree LSTM (K ¼ 2) because it suits more to constituency trees we

use. When the forgetting node has only one child, the model can be considered as the
standard LSTM. We denote the sentence representation as ~s.

2.4 Attention Pooling

In the attention pooling stage, we compare DCNN-based sentence representation and
Tree-LSTM based sentence representation to calculate the attention weights. By con-
trolling the output dimension of the Tree-LSTM same as the number of convolutional
filters ktop, we are able to map the both representations into the space of the same
dimension. The higher the similarity between the DCNN sentence representation and
Tree-LSTM representation, the bigger attention weight is assigned to DCNN repre-
sentation. The attention weights is given by:

ai ¼ exp sim ci;~sð Þð ÞPT
i¼1 exp sim ci;~sð Þð Þ : ð10Þ

The function sim denotes a method to measure similarity between inputs where
cosine similarity is adopted. The final sentence representation guided by the attention
weights is calculated by:

s ¼ a� c 2 R
T : ð11Þ

The final sentence representation forms the input of the top classifier.

2.5 Softmax Classifier

The sentence representation s is naturally regarded as an input to the top classifier
during the training phase while s;~s½ � is used at the testing phase. A linear transfor-
mation layer and a softmax layer are added at the top of the model to produce

56 L. Chen et al.



conditional probabilities over the class space. To avoid overfitting, dropout with a
masking probability p is applied to the penultimate layer. The key idea of dropout is to
randomly drop units (along with their connections) from the neural network during the
training phase [19]. This output layer is calculated as follows:

z ¼ Ws s� qð Þþ bs training phase
Ws s;~s�½ð Þþ bs testing phase



; ð12Þ

yc ¼ exp zcð ÞP
c02C exp z0c

� � ; ð13Þ

where q is the masking vector with dropout rate p which is the probability of dropping
a unit during training, and C is the class number. In addition, a l� 2 norm constraint of
the output weights W s is imposed during training as well.

Let ~yc denotes the label of a sentence. Cross entropy loss function is given by:

L ¼ �
X

i2N
X

c2C ~yc Sið Þlog yc Sið Þð Þ; ð14Þ

where ~yc codes in 1-of-K schema whose dimension corresponding to the true class is 1
while all others being 0. The parameters to be determined by the model include all the
weights and bias terms in the convolutional filters, the Tree-LSTM and the softmax
classifier. The attention weights will be updated during the training phase. Word
embeddings are fine tuned as well. Optimization is performed using the Adadelta
update rule of [20], which has been shown as an effective and efficient back-
propagation algorithm.

3 Experiments and Results

3.1 Classification

In this section, we evaluate the performance of the proposed model on the Stanford
Sentiment Treebank [21] benchmark dataset and compare it with several state-of-the-art
approaches.

The Stanford Sentiment Treebank contains about 11,800 sentences from the movie
reviews. The sentences were parsed with the Stanford parser [22]. There are two
subtasks: binary classification of sentences excluding neutral reviews with class dis-
tribution of 4955/4663., and fine-grained classification over five classes: very positive,
positive, neutral, negative, very negative, with class distribution of 1837/3118/2237/
3147/1516. Standard binarized constituency parse trees are provided for each sentence
in the dataset, and each node in these trees is annotated with a sentiment label.

[23] provide a guide regarding CNN architecture and hyperparameters for practi-
tioners who deploy CNNs for sentence classification tasks. We initialized our word
representations using publicly available 300-dimensional word2vec vectors. Word
representations were updated during training with a learning rate of 0.1. The DCNN
has two wide convolution layers with filters whose width is 7 and 5 respectively [7] and

Tree-LSTM Guided Attention Pooling of DCNN 57



100 feature maps. The networks use the tanh non-linear function. DCNN models were
trained using Adadelta with a learning rate of 0.05 and a minibatch size of 50.

The output dimension of the Tree-LSTM is set the same as the number of feature
maps in order to compare Tree-LSTM representations with DCNN representations. The
training batch size is set as 100.

All parameters were regularized with a per-minibatch L2 regularization strength of
10–4. The sentiment classifier was additionally regularized using dropout with a
dropout rate of 0.5.

3.2 Result

Experiment results against other methods are listed in Table 1. The performance of
AP-DCNN outperforms the state-of-the-art models like BLSTM and APCNN on the
fine-grained classification subtask and achieves accuracy comparable to APCNN and
Tree LSTM on the binary classification subtask.

4 Conclusion

In the present work, a new neural semantic sentence model termed Attention Pool-
ing DCNN has been successfully developed. We introduce Tree-LSTM to attention
mechanism to model sentence. Our model is able to capture long term and syntactic
information. We evaluated the learned semantic sentence representations on sentiment
classification task with very satisfactory results and good performance.

Acknowledgements. This research was supported by National High-tech R&D Program (863
Program No 2015AA015403) and National Natural Science Foundation of China (No
61370131).

Table 1. Accuracy (%) of our model and other methods from literature. The presented results
are the test set accuracy of the run with the highest accuracy on the validation set.

Method Fine-grained Binary

CNN-non-static 48.0 87.2
CNN-multichannel 47.4 88.1
DCNN 48.5 86.8
LSTM 46.4 84.9
Bidirectional LSTM 49.1 87.5
Tree-LSTM 51.0 88.0
APCNN 50.1 89.9
This work 50.6 88.7

58 L. Chen et al.



References

1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
2. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model.

J. Mach. Learn. Res. 3(Feb), 1137–1155 (2003)
3. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of

words and phrases and their compositionality, pp. 3111–3119 (2013)
4. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:

1408.5882 (2014)
5. Socher, R., Pennington, J., Huang, E.H., Ng, A.Y., Manning, C.D.: Semi-supervised

recursive autoencoders for predicting sentiment distributions. In: Association for Compu-
tational Linguistics, pp. 151–161 (2011)

6. Lawrence, S., Giles, C.L., Fong, S.: Natural language grammatical inference with recurrent
neural networks. IEEE Trans. Knowl. Data Eng. 12(1), 126–140 (2000)

7. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for
modelling sentences. arXiv preprint arXiv:1404.2188 (2014)

8. Socher, R., Lin, C.C., Manning, C., Ng, A.Y.: Parsing natural scenes and natural language
with recursive neural networks, pp. 129–136 (2011)

9. Socher, R., Manning, C.D., Ng, A.Y.: Learning continuous phrase representations and
syntactic parsing with recursive neural networks, pp. 1–9 (2010)

10. Funahashi, K., Nakamura, Y.: Approximation of dynamical systems by continuous time
recurrent neural networks. Neural Netw. 6(6), 801–806 (1993)

11. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Sig.
Process. 45(11), 2673–2681 (1997)

12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

13. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM
and other neural network architectures. Neural Netw. 18(5), 602–610 (2005)

14. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. P IEEE 86(11), 2278–2324 (1998)

15. Er, M.J., Zhang, Y., Wang, N., Pratama, M.: Attention pooling-based convolutional neural
network for sentence modelling. Inf. Sci. 373, 388–403 (2016)

16. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from
tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075 (2015)

17. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781 (2013)

18. Johnson, R., Zhang, T.: Effective use of word order for text categorization with
convolutional neural networks. arXiv preprint arXiv:1412.1058 (2014)

19. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a
simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–
1958 (2014)

20. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.
5701 (2012)

21. Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., Potts, C.:
Recursive deep models for semantic compositionality over a sentiment treebank, p. 1642.
Citeseer (2013)

22. Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Association for Computa-
tional Linguistics, pp. 423–430 (2003)

23. Zhang, Y., Wallace, B.: A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional
Neural Networks for Sentence Classification. arXiv preprint arXiv:1510.03820 (2015)

Tree-LSTM Guided Attention Pooling of DCNN 59

http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1404.2188
http://arxiv.org/abs/1503.00075
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1412.1058
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1510.03820

	Tree-LSTM Guided Attention Pooling of DCNN for Semantic Sentence Modeling
	Abstract
	1 Introduction
	2 The Proposed AP-DCNN Model
	2.1 Word Embedding
	2.2 DCNN Based Sentence Representation
	2.3 Tree-LSTM Based Sentence Representation
	2.4 Attention Pooling
	2.5 Softmax Classifier

	3 Experiments and Results
	3.1 Classification
	3.2 Result

	4 Conclusion
	Acknowledgements
	References


