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Abstract. In this paper, we consider the problem of vehicular positioning
enhancement with emerging connected vehicles (CV) technologies. In order to
actually describe the scenario, the Interacting Multiple Model (IMM) filter is
used for depicting varies of observation models. A CV-enhanced IMM filtering
approach is proposed to locate a vehicle by data fusion from both coarse GPS
data and the Doppler frequency shifts (DFS) measured from dedicated
short-range communications (DSRC) radio signals. Simulation results state the
effectiveness of the proposed approach called CV-IMM-EKF.
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1 Introduction

Due to the development of the fifth-generation (5G) mobile communications, this new
communicated method attracts more and more attention because of its faster transfer
speed, high adaptability and better end-to-end performance [2, 3]. And the more
transfer technologies such like the ultra dense cloud small cell network (UDCSNet) [1]
are used in the construction of vehicular network. About applications, some of the
communications problems in the society have been resolved such as LTE-V systematic
and integrated V2X solution [4], software-defined heterogeneous vehicular network
(SERVICE) [5], credible RTI sharing mechanism [6], traffic density estimation [7] and
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the physical layer outage performance of information sharing [8], and the effectiveness
in the application has improved greatly [9–11].

The availability of high-accuracy location-awareness is essential for a diverse set of
vehicular applications including intelligent transportation systems, location-based
services (LBS), navigation, as well as a couple of emerging cooperative vehicle-
infrastructure systems (CVIS) [12]. Typically, as an important technique, the real-time
vehicle positioning system has drawn great attention in the fields of transportation and
mobile communications [13]. However, it still faces a big challenge in the areas with
inconsistent availability of satellite networks, especially in dense urban areas where the
standalone global navigation satellite systems (GNSSs) (e.g., GPS). Even the high
precision GNSS equipment associated with a high cost (e.g., DGPS), sometimes pro-
vides serious outliers caused by non-line-of-sight (NLOS) (e.g., buildings, walls, trees,
vehicles, and more obstructions) and severe multipath issues [14].

The accurate positioning with sub-meter error is significant for vehicles in vehicle
ad-hoc networks (VANETs). Because any vehicle with this capability and wireless
communications would be able to sense others accurately and simply, which is an
extremely essential factor for vehicular collision avoidance, lane change assistance and
so on [15, 16]. In [14, 18, 19], the fundamental techniques in positioning systems have
been presented based on the real-time measurements of time of arrival (TOA), time
difference of arrival (TDOA), direction of arrival (DOA), received signal strength
indicator (RSSI), Doppler frequency shift (DFS), fingerprinting, and wireless channel
state information (CSI) techniques and so on. Especially, cloud-based wireless network
proposed in [20] is expected to provide flexible virtualized network functions for
vehicular positioning. Recent researches indicate that these measurements are chal-
lenged by some drawbacks varying from complexities of the time synchronization,
occupations of the high-bandwidth, to huge costs on the implementations [14].
Although there already exist some location systems, such as those presented in [17],
which can achieve lane-level location performance, these systems require the accurate
detection on unique driving events through smart phones or the deployment of lane
anchors.

To tackle the aforementioned problems, a new class of cooperative positioning
(CP) methods that relies on vehicle-to-vehicle (V2V) communications and data fusion
filtering [20–22] has been presented in recent years, which can further improve the
accuracy of positioning. Actually, such concern raised in CP is the reliability of the
localization approaches in heavy multipath and NLOS scenarios, which is similar to
that in indoor environment [19, 20].

Because of the low speed of vehicles, the DFS is too difficult to be extracted from
noise, and thus for DFS vehicular positioning methods, the standard deviation (STD) of
positioning error increases as the relative speed between the target vehicle and the other
vehicles decreases. So we will investigate the method to overcome this problem. In this
paper, We will focus on the scenario that the neighbor vehicles travel in the opposite
direction of the target vehicle (TV), for this case can provide obviously detectable
Doppler Effect.

In this paper, we design a CV-enhanced Interacting Multiple Model Extended
Kalman filter (CV-IMM-EKF) for vehicular positioning. Firstly a first-order Tylor
series expansion is used to transform a nonlinear problem to a linear problem.
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Secondly, a multiple-model is used to describe the variation of the DFS measurements.
Finally, IMM-EKF is used to estimate the target vehicle’s state. The next, we integrate
the GPS measurements from both a target vehicle and its neighbors into a vehicular
positioning filter and set a relatively conservative number of neighbors for the basic set,
which can reduce the dispensable computation complexity. And the information fusion
provides a great enhancement compared with GPS-only localization from the simu-
lation results.

The problem to be solved and the analytical models are presented in Sect. 2, the
CV-IMM-EKF steps are described in detail in Sect. 3, and the simulation results are
revealed and compared in Sect. 4. Finally, Sect. 5 concludes this paper.

2 Problem Statement

The problem to be solved is to estimate the position of a TV moving on a 2-D road,
where there are many other neighbors around the TV. All of the vehicles are able to
know their own state information, including position, velocity, etc., provided by coarse
GPS receiver and they can know the neighbors’ state information via vehicular com-
munications as well. Consequently, this case can be treated as a simple but practical
CV scenario. A TV is considered as a research object for positioning enhancement
based on CV, and a neighbor is considered as the vehicle who is within a certain
communication range to the TV and travel in the opposite direction of the TV. Each
vehicle is assumed to be with an OBU providing both the DSRC and the DFS mea-
surements [24].

Considering the ith moving vehicle at time instant k with a state vector

hik ¼ pix;k; p
i
y;k; v

i
x;k; v

i
y;k

h iT
, i ¼ 1; . . .; np, where the ðpix;k; piy;kÞ and vix;k; v

i
y;k

� �
denote

the ith vehicle’s position and velocity, respectively, and np is the total number of the
vehicles driving on the road, and T is a transpose operator. The dynamic state can be
modeled by the following system:

hik ¼ Fi
k�1h

i
k�1 þGi

k�1 uik�1 þwi
k�1

� � ð1Þ

where Fi
k�1 is the state transition matrix, and Gi

k�1 is the noise distribution matrix. uik�1

is the control vector and wi
k�1 is zero-mean white Gaussian noise with covariance

matrix Qi
k�1.

For the dynamic model presented by (1), the following observation model can be
defined:

Wk ¼ h hkð Þþ!k reð Þ ð2Þ

where h ¼ pix;k; p
i
y;k; v

i
x;k; v

i
y;k;x

1
k ; . . .;x

j
k

h iT
is a nonlinear observation vector in terms

of hk . x
j
k is the DFS of the received signal from the jth neighbor, j ¼ 1; . . .; nk; nk\np,

and nk is the total number of the neighbors on the road. � k reð Þ is the observation noise
that can be used to describe the M types of observation errors by assuming a set of
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another covariance matrixes. The transition among M types of the errors is generally
modeled as a first-order M-state homogeneous Markov chain re, e ¼ 1; 2; . . .;M.

Specifically, assuming that the DFS measurements from the OBU can be modeled
in a derivative form of the DSRC carrier frequency, f , as follows:

x j
k ¼ � f

c
rt d

j
k þ# j

kre
� � ð3Þ

d j
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
px;k � p j

x;k

� �2
þ py;k � p j

y;k

� �2r
ð4Þ

where c is the speed of light, d j
k is the relative distance between the TV and its neighbor

j, and # j
k is the DFS observation noise of neighbor j. Substituting (4) into (3) yields

x j
k ¼ � f

c

px;k � p j
x;k

� �
vx;k � v jx;k
� �

þ py;k � p j
y;k

� �
vy;k � v jy;k
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
px;k � p j

x;k

� �2
þ py;k � p j

y;k

� �2r
2
664

3
775þ� k reð Þ ð5Þ

where ðpix;k; piy;kÞ and vix;k; v
i
y;k

� �
is the position and velocity vector of the neighbor j.

To solve this nonlinear observation function, with the first-order Taylor expansion of
(5) around an arbitrary state vector, h can be transformed to a fixed form of matrix, in
which all of the components are supposed to obtain from both the GPS and OBU. As a
result, the observation model of the TV can be reformulated as a linear one:

Zk ¼ Hkhk þ� k reð Þ ð6Þ

and with the observation transition matrix:

Hk ¼

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
h11k h12k h13k h14k
..
. ..

. ..
. ..

.

hj1k hj2k hj3k hj4k

2
6666666664

3
7777777775

ð7Þ

where

hj1k ¼ rpx;k x j
k

� � ¼ � f
c

py;k � p j
y;k

� �
d j
k

� �3
py;k � p j

y;k

� �
vx;k � v jx;k
� �

þ px;k � p j
x;k

� �
vy;k � v jy;k
� �h i ð8Þ
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hj2k ¼ rpy;k x j
k

� � ¼ � f
c

px;k � p j
x;k

� �
d j
k

� �3
px;k � p j

x;k

� �
vy;k � v jy;k
� �

þ py;k � p j
y;k

� �
vx;k � v jx;k
� �h i ð9Þ

hj3k ¼ rvx;k x j
k

� � ¼ � f
c

px;k � p j
x;k

� �
d j
k

ð10Þ

hj4k ¼ rvy;k x j
k

� � ¼ � f
c

py;k � p j
y;k

� �
d j
k

ð11Þ

Based on the aforementioned models from (1) and (6), it is reasonable to assume
that Fi

k�1 and Gi
k�1 in the system model are invariable at both each time instant and

vehicle. Therefore, the position estimation of the TV can be formulated as the problem
of linear filtering for M-state jump Markov systems and the model can be simplified as:

hik ¼ Fhik�1 þG uik�1 þwi
k�1

� �
Zk ¼ Hkhk þ� k reð Þ

(
ð12Þ

Because Hk can be estimated by data fusion from both the GPS and OBU at each
time instant k, a CV-enhanced Interacting Multiple Model Extended Kalman filter
(IMM-EKF) can be deployed.

3 Connected Vehicles-Enhanced Interacting Multiple Model
Extended Kalman Filtering for Vehicular Positioning

In this section, we adopt the IMM approach to propose a vehicular positioning
enhancement algorithm based on CV. The structure of the vehicular positioning system
is illustrated in Fig. 1.

And the steps of this algorithm is as followed:
Step (1) Mixing Probabilities and State Estimates

lkþ 1;sjt ¼ pstlk;s=ct ð13Þ

where lkþ 1;sjt is known as the mixing probability in the IMM estimator, lk;s is the
probability of the event that the sth motion model is in effect at time step k, s; t ¼
1; 2; . . .;M, correspond to the s; tth mode of the Markov chain re, and

ct ¼
XM

s¼1
pstlk;s ð14Þ
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where ct is a normalization constant and

h0kjk;t ¼
XM

s¼1
lkþ 1;sjth

0;0
kjk;t ð15Þ

P0
kjk;t ¼

XM

s¼1
lkþ 1;sjt � P0;0

kjk;t þ h0;0kjk;t � h0kjk;t
h i

h0;0kjk;t � h0kjk;t
h iT� �

ð16Þ

Step (2) Mode Update and Prediction Steps
Calculate hj1k ; h

j2
k ; h

j3
k ; h

j4
k , according to the Eqs. (8)–(11) and then update the

observation transition matrix Hk defined in (7).
The CV-IMM-EKF advanced prediction is given by

hkjk�1;t � Fkhk�1jk�1;t ¼ Fhk�1jk�1;t ð17Þ

and the State prediction error covariance matrix is as follows:

Pkjk�1;t � FkPk�1jk�1;t Fkð ÞT þQk�1 ¼ FPk�1jk�1;tF
T þQk�1 ð18Þ

From the previous data, the CV-IMM-EKF gain is given by

Kk ¼ Pkjk�1;tH
T
k uk Nð Þð Þ
� Hk uk Nð Þð ÞPkjk�1;tH

T
k uk Nð Þð ÞþRk re Nð Þð Þ	 
�1 ð19Þ

where uk Nð Þ and re Nð Þ are functions of N and can change the dimension of the
observation transition matrix Hk and the covariance matrix Rk , respectively.

Fig. 1. Vehicular positioning system with information fusion of the DFS and GPS measure-
ments from both itself and the other neighbors
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The CV-IMM-EKF update steps are given by

h0kjk;t ¼ h0kjk�1;t þKk Zk � Hk uk Nð Þð Þh0kjk�1;t

n o
ð20Þ

P0
kjk;t ¼ P0

kjk�1;t � Kk Zk � Hk uk Nð Þð Þh0kjk�1;t þRk re Nð Þð Þ
n o

KT
k ð21Þ

The CV-IMM-EKF prediction steps are given by

h0kþ 1jk;t ¼ Fh0kjk;t þGlk;t ð22Þ

P0
kþ 1jk;t ¼ Fh0kjk;tF

T þGQGT ð23Þ

The likelihood function Kk;t and predicted mode probability lk;t are given by

Kk;t ¼ N Zk � Hk uk Nð Þð Þh0kjk�1;t;

0;Hk uk Nð Þð ÞP0
kjk�1;tH

T
k uk Nð Þð ÞþRk re Nð Þð Þ

 !
ð24Þ

lk;t ¼ Kk;tct=c ð25Þ

where c is a normalizing constant defined as follows:

c ¼
XM

t¼1
Kk;tct ð26Þ

Step (3) Estimates Combination

hkjk ¼
XM

t¼1
lk;thkjk;t ð27Þ

Pkjk ¼
XM

t¼1
lk;t � Pkjk;t þ hkjk;t � hkjk

� �
hkjk;t � hkjk
� �Tn o

ð28Þ

4 Numerical Study

4.1 Simulation Scenario

A basic set with N neighbors for the TV can be formed through Algorithm
CV-IMM-EKF. Considering a section of urban roads, which is with a width of four
lanes (each one is 3:5m wide) and a length of one kilometer. It is assumed that the
traffic density of the road section is 20 vehicies=km and the average speed of traffic is
generated stochastically in duration from 50 km=h to 60 km=h following a uniform
distribution. The initial positions of the neighbors are generated stochastically on the
road following a uniform distribution as well. The vehicle dynamics described in (12)
is with
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F ¼ I DtI
O I

 �
;G ¼

1
2Dt

2I
DtI

 �
ð29Þ

where I is a 2� 2 identity matrix, O is a 2� 2 zero matrix, and Dt is the sampling
period. The control vector in (12) is ui ¼ 0 0:01½ �T . The noise vector wi

k�1 ¼
rax;k�1; ray;k�1
� �T �N 0;Qð Þ, with covariance matrix Q ¼ diag r2ax; r

2
ay

h i
; where the

elements rax;k�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:99=2

p
and ray;k�1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:01=2

p
are the acceleration noises along

the X and Y-axis, respectively, with standard deviation (STD) in m=s2. The covariance
matrix R reð Þ of observation noise !k reð Þ�N 0;R reð Þð Þ is described as a first-order

Markov chain switching between two models R r1ð Þ ¼ diag r2px; r
2
py; r

2
vx;r

2
vy;

h
r2x1 r1ð Þ; . . .; r2xN r1ð Þ� and R r2ð Þ ¼ diag r2px; r

2
py; r

2
vx; r

2
vy; r

2
x1 r2ð Þ; . . .; r2xN r2ð Þ

h i
, of

which the elements are with STDs in units of m;m=s2 and Hz. The transition proba-

bility for this Markov chain is pr1r2 ¼ 0:9 0:1
0:1 0:9

 �
and their initial probability is

l0 ¼ 0:5 0:5½ �. According to the achievable performance discussed in [12, 19], as the
number of the neighbors is increasing, the performance enhancement can be less
obvious and lead to more additionally computational burden. Therefore, we set N ¼ 4,
which is a relatively conservative number of the neighbors for the basic set, which is
mentioned in Algorithm CV-IMM-EKF.

The vehicles that start at the first two lanes from the bottom move towards the
positive direction of the X-axis in Fig. 2. On the contrary, the vehicles that start at the
first two lanes from the top move towards the negative direction of the X-axis. The
‘black dot’ and ‘red note’ denote the initial positions of the TV and the neighbors,
respectively. The TV starts at position (300,5) in m, with the initial velocity vector
(60,0) in m=s2. However, because of the system noise and control vector set in the
dynamics model, the actual velocity is changing slightly over the sampling period.

In the simulations, the sampling period and length are taken to be 0:2 s and 100,
respectively, and the communication range of the DSRC is 300m. As the DFS mea-
surements presented in [19, 22], the Probability Density Function (PDF) of the DFS is
approximately zero-mean asymmetric Gaussian with the left and right STDs of 100Hz
and 120Hz, when the vehicles travel at the speed of 60 km=h, broadcasting the DSRC
packets with a frequency of 5:89GHz and a rate of 100 packets=s. It is worth noting
that the PDF of the DFS remains a fairly consistent estimation from LOS to NLOS.

Fig. 2. Initial scenario (Color figure online)

604 D. Tian et al.



Considering the noise of the DFS measurements as zero-mean Gaussian with two states
of STDs: rwN r1ð Þ ¼ 100Hz and rwN r2ð Þ ¼ 120Hz. Specifically, the state of the
observation noise remains unchanged in r1 between 0 to 6 s, and changes in the
following 10 s to r2. Finally, the state changes back to r1 for another 4 s. The position
and velocity measured by GPS are assumed to be added noise with the variance

rpx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
200=2m

p
; rpy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
200=2

p
m

� �
and rvx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15=2m

p
; rvy ¼

ffiffiffiffiffiffiffiffiffiffi
15=2

p
m

� �
,

respectively.

4.2 Simulation Results

From the Fig. 3, the Mean-CV-EKF has a higher order of magnitude than the Mean-
CV-IMM-KF and the Mean-GPS, and change curve fluctuates greatly. So the inter-
acting multiple model is necessary and we should ignore the huge error on numerical
value and put the next two in the Fig. 4 to compare the errors.

To quantify the performance of the proposed approach, the root mean square error
(RMSE) of vehicular positioning is calculated to assess the closeness of the estimated
trajectory p̂x;k; p̂y;k

� �
to the true trajectory px;k; py;k

� �
at each time instant over Nm ¼

500 Monte Carlo simulations. In (28), p̂x;k mð Þ; p̂y;k mð Þ� �
denotes the estimated position

vector in the mth Monte Carlo run at the kth step.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nm

XNm

m¼1
p̂x;k mð Þ � px;k
� �2 þ p̂y;k mð Þ � py;k

� �2h ir
ð30Þ

The performance comparison between the proposed CV-IMM-EKF and the
GPS-only approach is shown in Fig. 3 with respect to the RMSE in distance. It is
obvious that the proposed CV-IMM-EKF method outperforms the GPS alone

Fig. 3. CV-EKF, CV-IMM-EKF and GPS performance in positioning error
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localization. In order to indicate the enhancement of vehicular positioning of the
proposed approach, the enhancement indicator l is calculated as follows:

l ¼ 1� A RMSE
B RMSE

� �
� 100% ð31Þ

The enhancement of vehicular positioning is shown in Table 1. Compared to the
GPS-based localization, the proposed CV-IMM-EKF approach achieves the enhance-
ment of l ¼ 40:15%.

If A RMSE is better than B RMSE, l will be greater than zero. And the increase of
l is link to the good performance of A RMSE. By describing the transition of the
measurement noise as a first-order M-state jump Markov chain, the proposed
CV-IMM-EKF approach has been proved to achieve better performance in a scenario
that is similar to a practical one.

5 Conclusion

In this paper, a vehicular positioning algorithm has been proposed. The observation
transition matrix and the covariance matrix of observation noise are updated by the
fusion data at each time instant with the assistance of CV, which provide additional

Fig. 4. CV-IMM-EKF and GPS performance in positioning error

Table 1. CV-IMM-EKF and GPS error comparison

Method RMSE Enhancement

GPS 14.3268 N/A
CV-IMM-EKF 8.5032 40.15%
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useful information compared to the traditional filtering approach. Finally, the simula-
tion results show that the proposed approach outperforms the GPS-based localization.
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