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Abstract. An uplink massive MIMO system with a single antenna transmitter
and a single receiver with a large number of antennas is considered. For this
system we propose one new differential QAM scheme based on the division
operation. Specially, by designing one looking-up table, we provide the trans-
mitted differential QAM symbol generating process and the non-coherent
detection method, which is only based on two adjacent received signals, while
not using any instantaneous channel state information. At last the bit error rate
(BER) performance is simulated and the simulation results have shown that the
new proposed differential QAM scheme achieves much better performance than
the other differential QAM or differential amplitude phase shift keying (DAPSK)
schemes in uplink massive MIMO systems, especially for higher dimensional
modulation constellations.
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1 Introduction

Recently, in order to improve the transmission performance and spectrum efficiency, an
increasing number of antennas are being used in the transmitter and receiver of wireless
communications. In fact, massive multiple input multiple output (MIMO) has become
the preferred technology for the development of 5G communications. By using hun-
dreds of antennas, a significant antenna array gain can be achieved [1–4]. However, in
massive MIMO systems, channel estimation is really one challenging problem.
Because, the huge number of antennas greatly increases the complexity of the channel
estimation algorithms. Furthermore, if using pilots to perform channel estimation, there
may be no enough orthogonal pilot sequences available for use, and the pilot overhead
will also become an important issue. Aiming at the channel estimation problem, there
are two main research branches. One is trying to find the channel estimation algorithms
with reduced pilot overhead, such as the recent literatures [5–7]. The other is to adopt
non-coherence detection approaches, such as [8–12].
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In this paper, we only focus on the non-coherence schemes for the uplink massive
MIMO systems. Hereafter, let’s give a brief overview of the research results in this
area. In [8, 9], one non-coherent detection method for massive MIMO systems is
proposed based on the concept of autocorrelation-based detection by using differential
M-ary PSK constellation. In [10, 11], the non-coherent detection for uplink multi-users
massive MIMO systems is proposed based on the received average signal energy,
which need that the signal constellation for each user is different and should be further
designed. Obviously, these studies of [8–11] did not involve the cases of QAM
modulation. As we have known, in order to pursue higher spectrum efficiency, M-ary
QAM constellation is often used. Especially, for the uplink massive MIMO Systems,
the combined signal to noise ratio will be good enough to use QAM constellation.
Therefore, it is of great significance to study the differential schemes based on QAM
constellation for uplink massive MIMO systems. The latest research in [12] has
addressed differential non-coherence detections in uplink massive MIMO systems by
utilizing the channel statistics information, wherein the differential quadrature ampli-
tude modulation (QAM) based on the finite group theory of [13] is adopted.
But it is really regrettable that there exists the detection performance floor, especially
when the number of receive antennas is not large enough, or higher dimensional QAM
constellation is adopted.

In order to overcome the shortcomings of the current schemes for uplink massive
MIMO systems, we proposed one new differential QAM scheme based on the division
operation. At the transmitter, the transmit symbol is derived from the QAM constel-
lation, and the next transmit symbol are generated by looking up one table based on the
last transmit symbol and current input source information. At the receiver, the differ-
ential non-coherence detection is only based on two adjacent received signals while
without considering any channel state information. The simulation results have shown
that the new proposed differential QAM scheme achieves much better performance
than the previous differential QAM scheme in [12] and other differential amplitude
phase shift keying (DAPSK) [13].

In this paper, the following notations are adopted. Upper and lower bold face letters
denote matrices and vectors, respectively. The superscripts T and H stand for the
transpose and Hermitian operators, respectively. x with the top mark �, i.e., �x, denotes
the conjugate of x. j ¼ ffiffiffiffiffiffiffi�1

p
. The capital letter of the Greek alphabet accounts for the

symbol set.

2 System Model and Differential Design for Uplink
Massive MIMO Systems

2.1 System Model

Here, the uplink massive MIMO system is considered which contains only one transmit
antenna at the mobile station and a large number of receive antennas at the base station.
In the following, N denotes the number of receive antennas. The transmitted symbols
are generated from one M-ary QAM constellation, which denoted as CM . hit denotes
the channel gain between the transmit antenna and the i-th receive antenna at the t-th
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time instant, which is supposed to be independent and identically distributed, and
satisfy the complex normal distribution with zero mean and one variance, i.e.,
hit �CNð0; 1Þ. And the channel vector at the t-th time instant is defined as
ht ¼ ½h1t; h2t; . . .; hNt�.

At the receiver, the received signals at two adjacent t-th and (t + 1)-th time instants
could be written as

yt ¼ stht þ nt ð1Þ

ytþ 1 ¼ stþ 1htþ 1 þ ntþ 1 ð2Þ

where st 2 CM and stþ 1 2 CM denote the transmit modulation symbols at the t-th and
(t + 1)-th time instant, respectively; yt ¼ y1t; y2t; . . .; yNt½ �, ytþ 1 ¼ y1tþ 1; y2tþ 1; . . .;½
yNtþ 1� with yit, yitþ 1, i ¼ 1; 2; . . .;N denoting the received signal from the i-th receive
antenna at the t-th and (t + 1)-th time instant, respectively; nt ¼ n1t; n2t; . . .; nNt½ �,
ntþ 1 ¼ n1tþ 1; n2tþ 1; . . .; nNtþ 1½ � with nit, nitþ 1, i ¼ 1; 2; . . .;N denoting the additive
white Gaussian noise (AWGN) with mean zero and variance r2 received from the i-th
receive antenna at the t-th and (t + 1)-th time instant, respectively. In order to achieve
the non-coherent signal detection without the need of channel estimation, here we
assume that the channel remains unchanged at the two adjacent time instants, i.e.,
ht ¼ htþ 1.

2.2 Differential Design for Uplink Massive MIMO Systems

From (1) and (2), we have

ytþ 1y
H
tþ 1

ytyHtþ 1
¼ stþ 1htþ 1 þ ntþ 1ð Þ stþ 1htþ 1 þ ntþ 1ð ÞH

stht þ ntð Þ stþ 1htþ 1 þ ntþ 1ð ÞH

¼ stþ 1�stþ 1htþ 1hHtþ 1 þ stþ 1htþ 1nHtþ 1 þ�stþ 1ntþ 1hHtþ 1 þ ntþ 1nHtþ 1

st�stþ 1hthHtþ 1 þ sthtnHtþ 1 þ�stþ 1nthHtþ 1 þ ntnHtþ 1

ð3Þ

Note that, when the number of receive antennas is very large, it could be obtained
that

lim
N!1

sthtnHtþ 1 þ�stþ 1nthHtþ 1 þ ntnHtþ 1

N
¼ 0 ð4Þ

lim
N!1

stþ 1htþ 1nHtþ 1 þ�stþ 1ntþ 1hHtþ 1

N
¼ 0 ð5Þ

lim
N!1

ntþ 1nHtþ 1

N
¼ r2 ð6Þ

Then, with the massive receive antennas as well as ht ¼ htþ 1 (3) can be approx-
imately rewritten as
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ytþ 1y
H
tþ 1 � Nr2

ytyHtþ 1
� stþ 1�stþ 1htþ 1hHtþ 1

st�stþ 1hthHtþ 1

¼ stþ 1

st
ð7Þ

According to the received signals (1) and (2), (7) has given one non-coherent signal
detection method. In fact, there is another non-coherent signal detection method as
follows.

ytþ 1y
H
t

ytyHt � Nr2
� stþ 1�sthtþ 1hHt

st�sththHt
¼ stþ 1

st
ð8Þ

Here, the transmitted differential constellation is denoted as CM with st 2 CM and
stþ 1 2 CM . For simplicity, we use a special mapping operator F �½ � to denote differ-
ential operation. Specially, stþ 1 ¼ F dt; st½ � with dt 2 CM denoting the transmit source
symbol, which carries the source information bits. On the basis of (7), our hope is to
find one differential operator F �½ � to achieve the source information detection directly
only based on two adjacent receive signals yt and ytþ 1 while without considering any
channel state information. That is to say, for the differential operator stþ 1 ¼ F dt; st½ �,
it should have one corresponding reverse differential operator denoted as dt ¼
F�1 stþ 1; st½ �. According to (7), the reverse differential operator dt ¼ F�1 stþ 1; st½ �
should be based on the division operation stþ 1

st
, i.e., the transmit source symbol dt should

be only determined by the division stþ 1
st
. For the sake of clarity, we define the reverse

differential operation as dt ¼ F�1 stþ 1; st½ � ¼ F�1 stþ 1
st

h i
.

It must be noted that for the traditional differential M-ary PSK constellation [8, 9],
stþ 1 ¼ F dt; st½ � ¼ dt � st. However, for the new differential QAM constellation stþ 1 ¼
F dt; st½ � will represent a more general mapping operation instead of the multiplication
operation.

In order to ensure the correct detection, the operation dt ¼ F�1 stþ 1; st½ � ¼
F�1 stþ 1

st

h i
should satisfy the following properties for any complex modulation symbols

st 2 CM , s0t 2 CM , stþ 1 2 CM and s0tþ 1 2 CM .

If
stþ 1

st
¼ s0tþ 1

s0t
;F�1 stþ 1

st

� �
¼ F�1 s0tþ 1

s0t

� �
: ð9Þ

If stþ 1 6¼ s0tþ 1; F
�1 stþ 1

st

� �
6¼ F�1 s0tþ 1

st

� �
: ð10Þ

(9) means that the same division results will generate the same differential detection
results. While (10) expresses that with the same t-th transmit symbol st, different input
source symbols will produce different (t + 1)-th transmit symbols. At this point, as long
as we can find a mapping operator stþ 1 ¼ F dt; st½ � to meet (9) and (10), then we can
achieve the non-coherent detection on the base of (7).
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In the following section, we will present the detailed differential QAM design
process based on (7), (9) and (10).

3 Differential QAM Design for Uplink Massive MIMO
Systems

3.1 Differential QAM Design

For the sake of clarity, M-ary QAM constellation CM are listed as
CM ¼ fg1; g2; . . .; gMg. Furthermore, one looking-up table TM with M rows and M
columns is constructed to express the differential operation with the properties of (9)
and (10), and TMðu; vÞ stands for the element of the u-th, u ¼ 1; 2; . . .;M row and the v-

th, v ¼ 1; 2; . . .;M column of TM . And then, the reverse differential operator dt ¼
F�1 stþ 1

st

h i
could be represented by TMðu; vÞ ¼ gx with stþ 1 ¼ gu, st ¼ gv and dt ¼ gx,

i.e., gx ¼ F�1 gu
gv

h i
. With the help of such definitions, the differential properties (7), (9)

and (10) could be further rewritten as

TMðu; vÞ ¼ i; if F�1 gu
gv

� �
¼ gi ð11Þ

TMðu; vÞ ¼ TMðu0; v0Þ; if gu
gv

¼ gu0

gv0
ð12Þ

TMðu; vÞ 6¼ TMðu0; vÞ; if gu 6¼ gu0 ð13Þ

According to (13), we could know that each symbol of CM ¼ fg1; g2; . . .; gMg will
appear in each column of TM and will appear only once. Therefore, for given gi, there

are a total of M different combinations of gu; gvf g satisfying F�1 gu
gv

h i
¼ gi. Obviously,

these M different divisions should be as close as possible in order to combat the
incorporated noise interference in the transmission process. In other words, if the two
different while very close divisions mapped to different source symbols, the result is
very small noise pollution may cause the demodulation error. We define this design
idea as the nearest group theory.

In order to facilitate the practical design process, a heuristic algorithm is designed
based on the nearest group theory. Firstly, define one set containing all the division

elements gu
gv
, i.e., Q ¼ gu

gv
jgu 2 CM ; gv 2 CM

n o
. It should be noted that for two different

pairs fgu; gvg and fgu0 ; gv0 g with the same division result, i.e., gu
gv
¼ gu0

gv0
, they will be

consider one element in Q. Correspondingly, one counting number set is define as
N ¼ n gu=gvð Þjgu 2 CM ; gv 2 CMf g with its element n gu=gvð Þ denoting the total
number of fgu; gvg with the same division result. We further define one counting vector
c ¼ c1; c2; . . .; cn½ � with ci; i ¼ 1; 2; . . .;M denoting the number of TMðu; vÞ ¼ i in the
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looking-up table TM , which will be equal to M after finishing the construction of TM .

Define the group set Xgi ¼ gu
gv

F�1 gu
gv

h i
¼ gi;

��� gu 2 CM ; gv 2 CM

n o
.

Without loss of generality and for simplicity, we define g1 ¼ e ¼ 1, and then the
heuristic algorithm to design the reverse differential table TM corresponding to (11) is
presented as follows.

Step 1: Set ci ¼ 0 and Xgi ¼ ;, i ¼ 1; 2; . . .;M with ; denoting empty set. Let

TMðu; vÞ ¼ 0 with 0 denoting an invalid symbol; F�1 gu
gv

h i
¼ 0 denotes that the

division gu
gv
has not been assign one valid differential symbol.

Step 2: Examine symbol pair fgu; gvg one by one. If gu
gv
¼ gi, let TMðu; vÞ ¼ i,

ci ¼ ci þ 1 and Xgi ¼ Xgi [ gif g, i.e., F�1 gu
gv

h i
¼ gi.

Step 3: Find one valid gu0
gv0

and its nearest group set Xgi , do differential symbol

assignment for gu0
gv0

6¼ gi.

(A) Divide the division set Q ¼ gu
gv
jgu 2 CM ; gv 2 CM

n o
into two subset, one is QY

with its elements having been assigned one differential symbol successfully, the
other is QN with its elements having not completed assignment. Correspondingly,
the number set N ¼ n gu=gvð Þjgu 2 CM ; gv 2 CMf g is also divided into two sub-
sets with NY and NN corresponding to QY and QN, respectively.

(B) For each gu
gv
2 QN, determine the nearest group set Xgi close to

gu
gv
, and calculate the

minimum distance between gu
gv
and the nearest group set Xgi as follows:

Xgi ¼ arg min
gx2CMM�cx � n gu=gvð Þ

min
ay2Xgx

gu
gv

� ay

����
����

� �
ð14Þ

d
gu
gv

� �
¼ min

gx2CMM�cx � n gu=gvð Þ
min
ay2Xgx

gu
gv

� ay

����
����

� �
ð15Þ

In (14), the condition M � cx � n gu=gvð Þ means that the total number of fgu; gvg
with the same division result (n gu=gvð Þ) should be no more than the number of
symbol pair fgu; gvg that can be accepted by Xgx (M � cx).

(C) Find one valid gu0
gv0

2 QN and its nearest group set Xgi by examining (14) and (15),

specially,

gu0

gv0
;Xgi

� �
¼ arg min

gu
gv
2QN

min
gx2CMM�cx � n gu=gvð Þ

min
dy2Xgx

gu
gv

� dy

����
����

� �� �
ð16Þ

Which further satisfy the following condition (17).
Define c0 ¼ c01; c

0
2; . . .; c

0
n

� 	 ¼ c ¼ c1; c2; . . .; cn½ �, and update c0i ¼ ci þ n gu0=gv0ð Þ.
Define N0

N ¼ NN n gu0=gv0ð Þf gj , i.e., N0
N is formed by deleting element n gu0=gv0ð Þ from

NN. And then, for all elements np 2 N0
N; p ¼ 1; 2; . . .;PN with PN denoting the total
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element number of N0
N, we should be able to find PN elements c^p; p ¼ 1; 2; . . .;PN in

c0 ¼ c01; c
0
2; . . .; c

0
n

� 	
to satisfy

M � c^p � np ð17Þ

Condition (17) can ensure the convergence of the algorithm.

(D) For the valid selection gu0
gv0
;Xgi

h i
, by examining symbol pair fgu; gvg one by

one, if gu
gv
¼ gu0

gv0
, let TMðu; vÞ ¼ i, i.e., F�1 gu

gv

h i
¼ gi. After finishing assignment, update

ci ¼ ci þ nðgu0=gv0 Þ and Xgi ¼ Xgi [ gu0
gv0

n o
.

Return to step 3 to re-execute until all elements of table TM are assigned
successfully.

3.2 Simplified Differential Design for Square QAM

In this sub-section, we mainly consider a square M-ary QAM constellation with
M ¼ 2m, just because square M-ary QAM constellation has a wide range of practical
applications, and has very good symmetrical properties. From the above analysis of the
nearest group theory we will conclude that these symmetrical properties are of great
significance to simplify the differential operation design.

As we have known, for a square M-ary QAM constellation with M ¼ 2m, if
gx 2 CM , we have jgx 2 CM , �gx 2 CM and �jgx 2 CM . It is not difficult to know that
the division gu

gv
also have these symmetrical properties. Therefore, it is reasonable to

assume that the differential operation also have these symmetrical properties, specifi-
cally, we have

F�1 gu
gv

� �
¼ gx;F

�1 j
gu
gv

� �
¼ jgx;

F�1 � gu
gv

� �
¼ �gx;F

�1 �j
gu
gv

� �
¼ �jgx

ð18Þ

Therefore, in the heuristic algorithm to design the differential table TM , we could
only focus on a quarter of division elements to complete all division elements
assignment. More details could be found in the following design examples.

3.3 Differential 16QAM Design Example

Here, the 16QAM constellation set C16 is defined as

C16 ¼ fg1 ¼ e ¼ 1; g2 ¼ 3; g3 ¼ 2þ 1j; g4 ¼ 2� 1j;

g5 ¼ jg1; g6 ¼ jg2; g7 ¼ jg3; g8 ¼ jg4;

g9 ¼ �g1; gA ¼ �g2; gB ¼ �g3; gC ¼ �g4;

gD ¼ �jg1; gE ¼ �jg2; gF ¼ �jg3; gG ¼ �jg4g

ð19Þ
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herein, A = 10, B = 11, C = 12, D = 13, E = 14, F = 15, G = 16 .
As shown in Fig. 1, the mark “	” denotes the symbols of 16QAM set C16, and the

mark “
” accounts for the division results of gu
gv
with gu 2 C16; gv 2 C16.

Based on symmetrical properties of Fig. 1, we only focus on a quarter of plane
located between the two straight lines y ¼ �x with x[ 0. In which there are only 4
baseband 16QAM symbols fg1 ¼ e ¼ 1; g2 ¼ 3; g3 ¼ 2þ 1j; g4 ¼ 2� 1jg and 13
division symbols. And hereby the design complexity is really very small. Once one
division symbol in the focus area has completed assignment, we could use (18) to
realize the other symmetric division symbols’ assignment.

By carry out the heuristic algorithm presented in sub-Sect. 3.1, the reverse differ-
ential looking-up table T16 is constructed, as demonstrated in Table 1.

It should be noted that Table 1 is the reverse differential looking-up table corre-

sponding to F�1 gu
gv

h i
¼ gx. In the practical applications one differential looking-up table

corresponding to stþ 1 ¼ F dt; st½ � could be also constructed according to F�1 gu
gv

h i
¼ gx,

which will be used to accelerate the transmitted differential symbols generation.

3.4 Differential 64QAM Design Example

Here, the 64QAM constellation set C64 is defined as

C64 ¼ fC1
16; j � C1

16;�1 � C1
16;�j � C1

16g ð20Þ

Fig. 1. 16QAM constellation (“	”) and gu
gv
results (“
”)
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with

C1
16 ¼ fg1 ¼ e ¼ 1; g2 ¼ 3; g3 ¼ 5; g4 ¼ 7;

g5 ¼ 2þ 1j, g6 ¼ 2� 1j, g7 ¼ 4 + 1j, g8 ¼ 4� 1j,

g9 ¼ 6þ 1j, gA ¼ 6� 1j, gB ¼ 3 + 2j, gC ¼ 3� 2j,

gD ¼ 5þ 2j, gE ¼ 5� 2j, gF ¼ 4 + 3j, gG ¼ 4� 3jg

ð21Þ

The reverse differential looking-up table for 64QAM is constructed as shown in
Table 2. It should be noted that Table 2 only provides a part of elements, just because
other elements could be derived from these elements according to (18). For example,

F�1 g40
g18

� �
¼ F�1 �1 � g8

j � g2

� �
¼ F�1 j

g8
g2

� �
¼ jF�1 g8

g2

� �
:

4 Simulation Results

In this section, the BER (Bit Error Rate) performances of the new differential 16QAM
and 64QAM are simulated over Rayleigh fading channels. Gray mapping is adopted for
the transmitted 16QAM and 64QAM constellations. The simulation results are shown
in Figs. 2 and 3, in which N denotes the number of receive antennas. “Old DQAM”,
“New DQAM” and “DAPSK” represent the differential QAM schemes provided in
[12], the new proposed differential QAM schemes and the differential amplitude phase
shift keying (DAPSK) schemes [12, 14], respectively.

Table 1. Reverse differential looking-up Table (16QAM).

1 2 3 4 5 6 7 8 9 A B C D E F G

1 1 4 2 2 D G E E 9 C A A 5 8 6 6
2 2 1 3 3 E D F F A 9 B B 6 5 7 7
3 3 2 1 8 F E D 4 B A 9 G 7 6 5 C
4 4 3 G 1 G F C D C B 8 9 8 7 4 5
5 5 8 6 6 1 4 2 2 D G E E 9 C A A
6 6 5 7 7 2 1 3 3 E D F F A 9 B B
7 7 6 5 C 3 2 1 8 F E D 4 B A 9 G
8 8 7 4 5 4 3 G 1 G F C D C B 8 9
9 9 C A A 5 8 6 6 1 4 2 2 D G E E
A A 9 B B 6 5 7 7 2 1 3 3 E D F F
B B A 9 G 7 6 5 C 3 2 1 8 F E D 4
C C B 8 9 8 7 4 5 4 3 G 1 G F C D
D D G E E 9 C A A 5 8 6 6 1 4 2 2
E E D F F A 9 B B 6 5 7 7 2 1 3 3
F F E D 4 B A 9 G 7 6 5 C 3 2 1 8
G G F C D C B 8 9 8 7 4 5 4 3 G 1
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From Fig. 2 we could know that new designed differential 16QAM is superior to
DAPSK schemes [12, 14]. Furthermore, our design method could be easily extend to
higher dimensional modulation constellations, such as 64QAM, which is really difficult
for the traditional DAPSK schemes.

Table 2. Part of reverse differential looking-up Table (64QAM).

1 2 3 4 5 6 7 8 9 A B C D E F G

1 1 11 16 16 12 13 14 14 16 16 13 13 16 16 12 13
2 2 1 7 9 2 2 2 2 11 11 7 7 7 7 10 10
3 3 12 1 4 6 5 3 3 3 3 14 14 5 5 14 15
4 4 8 6 1 11 11 10 10 2 2 2 2 9 9 15 14
5 5 4 13 14 1 30 6 11 12 15 3 25 12 30 7 28
6 6 5 12 15 63 1 11 6 15 12 57 3 62 12 61 7
7 7 2 2 7 3 3 1 7 5 7 4 32 2 10 6 27
8 8 3 3 8 4 4 7 1 7 5 64 4 10 2 59 6
9 9 13 4 2 7 16 9 12 1 6 8 15 4 13 8 32
A 10 15 5 3 16 7 12 9 6 1 15 8 13 4 64 8
B 11 9 10 12 13 24 4 29 10 13 1 21 6 27 2 21
C 12 10 11 13 56 12 61 4 13 10 53 1 59 6 53 2
D 13 6 8 5 14 25 5 15 4 9 11 28 1 15 3 25
E 14 7 9 6 57 15 15 5 9 4 60 11 15 1 57 3
F 15 14 15 10 10 22 8 32 8 30 6 26 3 24 1 20
G 16 16 14 11 53 10 64 8 62 8 58 6 56 3 52 1

Fig. 2. BER performance of differential 16QAM and 16DAPSK
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From Figs. 2 and 3, we also see that the new designed differential QAM schemes
completely eliminates the performance floor compared with the differential QAM
schemes provided in [12, 13]. Especially, for higher dimensional modulation con-
stellations, such as 64QAM, the new designed differential QAM schemes are greatly
superior to that of the differential 64QAM schemes presented in [12, 13] and the latter
has very serious performance floor. This result proves that the new differential QAM
schemes are very suitable for the applications in the next generation wireless
communications.

5 Conclusions

In this paper, a new differential QAM scheme is proposed for the uplink massive MIMO
systems. Specially, one looking-up table is constructed based on the division operation
between two transmitted QAM symbols, which is used to generate the transmitted
differential QAM symbols at the transmitter and to carry out the non-coherent detection
at the receiver. The new differential detector only uses two adjacent received signals
without requiring any channel state information. And hereby, there is no so-called
phenomena of performance floor, while the performance floor really exists and may by
very harmful for the newly presented differential QAM schemes in [12]. Furthermore,
the new differential QAM schemes provides a better flexibility compared with the
traditional DAPSK schemes, especially for higher dimensional constellations. Taken
together, the new differential QAM schemes are especially suitable for massive MIMO
systems to achieve great performance while without the requirement of large amounts of
pilots and complicated channel estimations.

Fig. 3. BER performance of differential 64QAM.
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