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Abstract. In this paper, based on factor graphs and Laurent decompositions,
we propose an iterative receiver of CPM signals over interference (ISI) channels.
We adopt the Gaussian message passing to simplify the message passing in
factor graphs. Compared with the conventional receivers with the minimum
mean squared error (MMSE) frequency domain equalization (FDE) and the
BCJR demodulator, the proposed algorithm has advantages in terms of com-
plexity. And the proposed algorithm can achieve better performance with the
convolutional code.
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1 Introduction

Continuous phase modulation (CPM) is a nonlinear modulation in which the phase is a
continuous function of time [1]. CPM is attractive for its good spectral efficiency and
constant envelope. However, the optimal receiver of CPM using maximum-likelihood
sequence detection (MLSD) is consists of a filter bank followed by a Viterbi decoder.
As a consequence, the optimal receiver of M-ary CPM signals requires a bank of 2ML

matched filters and a trellis diagram with pML�1 states, where L is the memory of the
CPM pulse and p is the number of phase states.

Considering the practical applications of CPM, several methods have been pro-
posed in the literature to reduce the complexity of the receiver, such as Rimoldi
decomposition [2], Walsh decomposition [3] and Laurent decomposition (LD) [4]. In
[4], by Laurent decomposition (LD), the binary CPM signal is decomposed into a sum
of pulse amplitude modulation (PAM) signals. Moreover, Mengali and Morelli extend
the LD from binary CPM signals to M-ary CPM signals [5]. The LD can significantly
reduce both the number of matched filters and the number of states in trellis diagram,
and is more popular used than the other methods. Such as, a reduced-complexity
suboptimal detection of CPM signals is proposed based on the extended Laurent
representation in [6].

To mitigate the inter-symbol interference (ISI) caused by multipath environments,
the equalization is necessary at the receiver to mitigate the ISI for CPM. The optimum
receiver of CPM with ISI is a kind of maximum likelihood sequence estimation
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(MLSE) receiver in the time domain. The complexity of this receiver is effected by both
the memory of CPM signals and the delay spread of the multipath channel. As the
complexity grows exponentially with the length of the spread, the MLSE receiver is
unfeasible for the channel with long delay multipath taps. To solve this problem, the
frequency domain equalization (FDE) approach is extended to the CPM scenarios.
A series of literature concerned on the study of FDE in CPM receivers appears since
2000s. In 2005, Tan and Stuber study the application of linear single-carrier
frequency-domain equalization (SC-FDE) to CPM [7]. Their method can provide better
BER performance and lower complexity cost than the optimal receivers for multipath
channels having long delay components. A year later, Pancaldi and Vitetta combined
the frequency-domain equalization and iterative information exchange [8]. In [9], a
frequency domain double turbo equalizer of CPM is proposed by combining the
soft-input soft-output (SISO) FDE, the SISO CPM demodulator and the SISO decoder.

Iterative receivers based on factor graphs (FG) and the sum-product algorithm
(SPA) have been widely used in linear modulation scenarios to solve the problem of the
inter-symbol interference. Moreover, various approximate inference algorithms have
been proposed to reduce the complexity of message passing in graphical models, such
as the Gaussian message passing (GMP) [10], the expectation propagation [11–13].
However, less attention has been devoted to the application of this method to CPM
scenario. In [14], the FG and SPA is used in the detection of CPM signals over channel
affected by phase noise.

In this paper, we consider the equalization and detection of CPM signals over
multipath channels based on factor graphs and the SPA. By using the Laurent
decomposition and the Gaussian message passing, we proposed a kind of
low-complexity time-domain turbo equalization of CPM signals. It will be shown that
the designed receivers have similar performance with respect to the optimal detectors
regardless of the code part. Considering the convolutional code, it has better perfor-
mance than the MMSE-FDE and optimal detectors.

The paper is organized as follows. In Sect. 2, we describe the system model
including the signal model of CPM based on the Laurent decomposition and the model
of received signals after multipath channel. The system model is used in Sect. 3 to
realize the low-complexity turbo equalization. Section 4 shows the simulation results
and conclusions are drawn in Sect. 5 finally.

2 Signal Model

In this paper, only single modulation index CPM is considered. In general, a CPM
signal can be expressed as [1]:

sðt;~aÞ ¼
ffiffiffiffiffiffiffi
2Es

T

r
expfj2ph

X
n

anqðt � nTÞg ð1Þ

where Es is the energy per symbol, T is the symbol period, h ¼ r=p is the modulation
index (r and p are relatively prime integers), fang are the transmitted information
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symbols, an 2 f�1;�3; . . .;�M � 1g, n ¼ 0; . . .;N � 1. The function qðtÞ is the
phase response and has the form as:

qðtÞ ¼
0; if t� 0R t
0 gðsÞds; if 0\t\LT
1=2; if t� LT

8<: ð2Þ

where the gðsÞ is the frequency pulse defined over a finite time interval 0� t� LT .
Exploiting the extended Laurent decomposition [4, 5], the CPM signals can be

expressed as a sum of linearly modulated signals:

sðt;~aÞ ¼
XK�1

k¼0

X
n

ak;npkðt � nTÞ ð3Þ

in which K�Qlog2 MðM � 1Þ, Q ¼ 2L�1 and pkðtÞ is the k th PAM component and the
symbols fak;ng are the function of the transmitted information symbols {an}. The
Laurent decomposition in (3) can exactly express the CPM signals when
K ¼ Qlog2 MðM� 1Þ. Considering most of the signal power is concentrated on the first
M � 1 PAM components, a value of K ¼ M � 1 is usually be used to attain a good
tradeoff between the complexity of the system and the approximation quality of
Laurent decomposition. In this paper, we only consider the first PAM component to
further reduce the complexity of the receiver. As a consequence, we obtain an
approximation of sðt;~aÞ:

sðt;~aÞ �
X
n

a0;np0ðt � nTÞ: ð4Þ

As shown in [6], the symbol a0;n can be expressed as a function of a0;n�1 and an:

a0;n ¼ a0;n�1e
jphan : ð5Þ

Furthermore, we employ an equivalent representation of information symbols:

an ¼ an þðM � 1Þ
2

ð6Þ

in which an 2 f0; 1; . . .;M � 1g. Substituting (6) into (5), we can get a new expression
about a0;n:

a0;n ¼ e�jphðM�1Þðnþ 1Þej2ph/n ð7Þ

/n ¼ ½/n�1 þ an�p ð8Þ

where /n is the accumulation of phase, /n 2 f0; 1; . . .; p� 1g and ½��p denotes the
“modulo p” operator.

Considering the multipath channels, the received signals can be expressed as:
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rðtÞ ¼
XNL�1

l¼0

hlsðt � slTÞþwðtÞ ð9Þ

where hl and sl (fslg are positive integers in this paper) are the gain and the symbol
number of the propagation delay for the lth path and NL is the number of channel paths.
The function wðtÞ is complex-valued Additive White Gaussian Noise(AWGN) with
variance r2w. Exploiting the Laurent decomposition of CPM signals, a discrete-time
expression of received signals can be written as:

rn ¼
XNL�1

l¼0

hlsn�sl þwn ð10Þ

rn ,
Z

rðtÞp0ðt � nTÞdt ð11Þ

sn ,
Z

sðtÞp0ðt � nTÞdt ¼
XN�1

m¼0

Z
p0ðt � mTÞp0ðt � nTÞdta0;m ð12Þ

where wn is assumed to be independent identical distributed Gaussian sequence with
variance r2n. As shown in [5], p0ðtÞ is the first component of pulse amplitude modu-
lation (PAM) signals. The integral value of

R
p0ðt � mTÞp0ðt � nTÞdt varies with the

value of m� nj j which is maximum when m� nj j is zero and takes zero when m� nj j
is big enough. Based on this property, we can further simplify the expression (12):

sn �
Xnþ Lm

m¼n�Lm

Z
p0ðt � mTÞp0ðt � nTÞdta0;m ¼

XnþLm

m¼n�Lm

p m�nj ja0;m ð13Þ

where Lm is an integer associated with M and L.

3 The Proposed Algorithm

Based on the signal model mentioned in Sect. 2, we derive the factor graph based
receiver of CPM signals in this section. Our goal is to restore the transmitted infor-
mation bits b from the received signals r. Generally, we use the Maximum a Posteriori
(MAP) strategy to estimate the information sequence:

bbi ¼ argmax
bi

p bijrð Þ ð14Þ

where bi denotes the i th information bit and p bijrð Þ is the marginal probability mass
function of the joint posterior probability distribution pðbjrÞ. According to the Baye-
sian rule, pðbjrÞ can be expressed as:
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pðbjrÞ / pðrjsÞpðsjaÞpðaj/Þpð/jaÞpðajcÞpðcjbÞpðbÞ ð15Þ

where / denotes proportionality and c is the code bits. The element cqn denotes the q th
information bit of the n th symbol an. Using (10) in Sect. 2, the conditional probability
pðrjsÞ can be factorized into:

p rjsð Þ ¼
Y
n

fn rnjsð Þ ¼
Y
n

exp �
rn �

PNL�1

l¼0
hlsn�sl

� �2

r2n

8>>><>>>:
9>>>=>>>; ð16Þ

in which n ¼ 0; 1; . . .;N � 1 and we assumed the channel is already known to the
receiver – in other words, the hl and sl are already known. Similarly, we can get the
factorization of the conditional probabilities pðsjaÞ,pðaj/Þ and pð/jaÞ using Eqs. (13),
(7) and (8)

p sjað Þ ¼
Y
n

gn sn;að Þ ¼
Y
n

d sn �
XnþLm

m¼n�Lm

p m�nj ja0;m

 !
ð17Þ

p aj/ð Þ ¼
Y
n

In a0;n;/n

� � ¼Y
n

d a0;n � e�jphðM�1Þðnþ 1Þej2ph/n

� �
ð18Þ

p /jað Þ ¼
Y
n

Jn an;/n;/n�1ð Þ ð19Þ

in which gnð�Þ, Inð�Þ and Jnð�Þ are the indicator functions and fang are assumed to be
unipolar symbols, an 2 f0; 1; . . .;M � 1g. The conditional probability pðajcÞ in (15)
can be factorized into

p ajcð Þ ¼
Y
n

p anjcnð Þ ¼
Y
n

d an � u cnð Þð Þ ð20Þ

where dð�Þ is the Kronecker delta function and uðcnÞ is the mapping function and cn is
comprised of cqn; 8q

	 

, q ¼ 0; 1; . . .;Q,Q ¼ log2 M � 1.

According to the factorization (16)–(20), we can get the factor graph representation
of the receiver, as depicted in Fig. 1. In Fig. 1, fn denotes the channel transition
function fnðrnjsÞ, gn denotes the Laurent decomposition constraint gnðsn; aÞ, Mn

denotes the mapping constraint pðanjcnÞ,Pð/�1Þ and Pð/N�1Þ denotes the initial
probabilities of the variables /�1 and /N�1,Pð/�1Þ ¼ Pð/N�1Þ ¼ 1=p.

Given the factor graph representation, the marginals can be computed exactly by
message passing. Before study the detailed message computation, we introduce the rep-
resentation ofmessages that follows. Themessages passing between the function nodesA
and variable nodes B of the ith iteration are denoted as liA!BðBÞ and liB!AðBÞ. For
example, the messages passing between the nodes ffng and fsng are denoted as lifn!sk ðskÞ
and lisn!ftðsnÞ respectively, k ¼ n� sl, t ¼ nþ sl, l ¼ 0; . . .;NL � 1, n ¼ 0; . . .;N � 1.
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Firstly, we focus on the equalization part of the factor graph. By applying the
updating rules of the SPA in the factor graph, messages lifn!sk ðskÞ and lisn!ftðsnÞ can be
calculated by

lisn!ftðsnÞ ¼
Y
t0 6¼t

li�1
ft0!snðsnÞlign!snðsnÞ ð21Þ

lifn!skðskÞ ¼
Z
s!=sk

fnð s!Þ
Y
k0 6¼k

lisk0!fnðsk0 Þ: ð22Þ

However, a direct computation of Eqs. (21) and (22) is intractable for
high-dimensional integral. Hence, we derive the reduced-complexity receiver based on
the Gaussian message passing method.

Considering the practical application scenarios, we can assume that sn is a con-
tinuous complex Gaussian random variable. According to the Eq. (10), wn is a
Gaussian variable, and then ðrn �

PNL�1
l¼0 hlsn�slÞ is also a Gaussian variable. We can

reasonably assume that the messages lifn!skðskÞ and lisn!fmðsnÞ are approximated as
Gaussian density function:

lisn!ftðsnÞ ¼ NCðsn; xisn!ft ; v
i
sn!ftÞ ð23Þ

lifn!sk ðskÞ ¼NCðhlsk; xifn!sk ; v
i
fn!sk Þ ð24Þ

where xisn!ft and visn!ft respectively denote the mean and the variance of the variable sn
with respect to the message lisn!ftðsnÞ, xifn!sk and vifn!sk denote the mean and the

variance of the variable hlsk with respect to the message lifn!sk ðskÞ . According to

Fig. 1. Factor graph representation.
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Eqs. (13) and (17), considering the linear relationship between variables sn and a0;n, we
can assume a0;n is a continuous complex Gaussian random variable too. According to
SPA, the messages passing between nodes sn and gn can be express as:

lisn!gnðsnÞ ¼ NCðsn; xisn!gn ; v
i
sn!gnÞ ð25Þ

lign!snðsnÞ ¼ NCðsn; xign!sn ; v
i
gn!snÞ : ð26Þ

Similarly, the messages passing between nodes a0;n and gn can be express as:

lia0;n!gjða0;nÞ ¼ NCða0;n; xia0;n!gj ; v
i
a0;n!gjÞ ð27Þ

lign!a0;m
ða0;mÞ ¼ NCðp m�nj ja0;m; xign!a0;m

; vign!a0;m
Þ ð28Þ

where n ¼ 0; . . .;N � 1, n� Lm � j� nþ Lm, n� Lm �m� nþ Lm.
According to the properties of Gaussian distribution and the rules of SPA, the

means and the variances mentioned above can be exactly calculated as:

xifn!sk ¼ rn �
X
l0 6¼l

hl0x
i
sn�sl0 !fn ; v

i
fn!sk ¼ r2n þ

X
l0 6¼l

hl0j j2visn�sl0 !fn ð29Þ

visn!ft ¼
1

uign!sn

þ
X
l0 6¼l

hl0j j2
vi�1
fnþ sl0 !sn

 !�1

; xisn!ft¼ visn!ft

xign!sn

vign!sn

þ
X
l0 6¼l

hl0j jxi�1
fnþ sl0 !sn

vi�1
fnþ sl0 !sn

 !
ð30Þ

visn!gn ¼
X
l

hlj j2
vifnþ sl!sn

 !�1

; xisn!gn ¼ visn!gn

X
l

hlxifnþ sl!sn

vifnþ sl!sn

ð31Þ

xign!sn ¼
XnþLm

m¼n�Lm

p m�nj jxia0;m!gn ; v
i
gn!sn ¼

XnþLm

m¼n�Lm

p m�nj j
�� ��2via0;m!gn ð32Þ

xign!a0;m
¼ xisn!gn �

X
m0 6¼m

p m0�nj jyi�1
a0;m0!gn ; v

i
gn!a0;m

¼ visn!gn þ
X
m0 6¼m

p m0�nj j
�� ��2vi�1

a0;m0!gn

ð33Þ

via0;n!gj ¼
1

viIn!a0;n

þ
X
j0 6¼j

p j0�nj j
�� ��2
vigj0!a0;n

 !�1

; xia0;n!gj ¼ via0;n!gj

xiIn!a0;n

viIn!a0;n

þ
X
j0 6¼j

p j0�nj jxigj0!a0;n

vigj0!a0;n

 !
ð34Þ

where p m�nj j ,
R
p0ðt � mTÞp0ðt � nTÞdt.
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Next we study the demodulation part of the factor graph in Fig. 1. By applying the
rules of SPA continually, the message lia0;n!Inða0;nÞ can be computed:

lia0;n!Inða0;nÞ ¼
Y
j

ligj!a0;n
ða0;nÞ: ð35Þ

Considering the equations in (34), we can further compute the message
lia0;n!Inða0;nÞ as:

via0;n!In ¼
X
j

p j�nj j
�� ��2
vigj!a0;n

 !�1

; xia0;n!In ¼ via0;n!In

X
j

p j�nj jxigj!a0;n

vigj!a0;n

 !
ð36Þ

where xia0;n!In and via0;n!In are the mean and the variance of the message lia0;n!Inða0;nÞ.
Before computing the message li/n!In

ð/nÞ, we focus on the value of the variable
a0;n. According to the Eq. (7), a0;n is actually a discrete random variable with p values.
The probability distribution of a0;n can be calculated by

P#ða0;nÞ ¼
NCða0;n; xia0;n!In ; v

i
a0;n!InÞP

a0;n
NCða0;n; xia0;n!In ; v

i
a0;n!InÞ

: ð37Þ

By applying the updating rules of the SPA, messages with reference to the
demodulation part can be recursively computed as:

liIn!/n
ð/nÞ ¼

X
a0;n

Inða0;n;/nÞlia0;n!Inða0;nÞ ð38Þ

li/n!Inð/nÞ ¼ liJn!/n
ð/nÞliJnþ 1!/n

ð/nÞ ð39Þ

liIn!a0;nða0;nÞ ¼
X
/n

Inða0;n;/nÞli/n!Inð/nÞ ð40Þ

liJn!/n
ð/nÞ ¼

X
an

X
/n�1

Jnðan;/n;/n�1Þli�1
an!JnðanÞli/n�1!Jnð/n�1Þ ð41Þ

li/n!Jnþ 1
ð/nÞ ¼ liJn!/n

ð/nÞliIn!/n
ð/nÞ ð42Þ

liJn!/n�1
ð/n�1Þ ¼

X
an

X
/n

Jnðan;/n;/n�1Þli�1
an!JnðanÞli/n!Jnð/nÞ ð43Þ

li/n!Jnð/nÞ ¼ liJnþ 1!/n
ð/nÞliIn!/n

ð/nÞ ð44Þ

liJn!anðanÞ ¼
X
/n

X
/n�1

Jnðan;/n;/n�1Þli/n!Jnð/nÞli/n�1!Jnð/n�1Þ ð45Þ
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In Eqs. (41) and (44), the messages li/n�1!Jn
ð/n�1Þ and liJnþ 1!/n

ð/nÞ have the
following initial conditions:

li/�1!J0ð/�1Þ ¼ liJN!/N�1
ð/N�1Þ ¼ 1=p: ð46Þ

In Eq. (38), the message liIn!/n
ð/nÞ is a discrete probability distribution function

about the variable /n and can be computed just like the means in Eq. (37). As for the
message liIn!a0;n

ða0;nÞ in Eq. (40), it can be approximated as Gaussian density function

and can be computed using the message li/n!Inð/nÞ:

liIn!a0;n
ða0;nÞ ¼ NCða0;n; xiIn!a0;n

; viIn!a0;n
Þ ð47Þ

P"ða0;nÞ ¼ Pð/nÞ ¼ li/n!Inð/nÞ ð48Þ

xiIn!a0;n ¼ EP"ða0;nÞ½a0;n�; viIn!a0;n ¼ EP"ða0;nÞ½ a0;n
�� ��2� � xiIn!a0;n

��� ���2: ð49Þ

Finally, we focus on the decoder part of the factor graph in Fig. 1.
A soft-input-soft-output (SISO) decoder is used to implement the turbo iteration with
the demodulation part. According to the rules of SPA, the message lian!Mn

ðanÞ can be
updated by

lian!Mn
ðanÞ ¼ liJn!anðanÞ: ð50Þ

Using the message lian!Mn
ðanÞ in Eq. (50) and the a priori logarithm likelihood

ratios (LLRs) ki�1
a ðcqnÞ; 8q

	 

fed back from the SISO decoder at previous turbo iter-

ation, the extrinsic LLRs kieðcqnÞ; 8q
	 


which are the input of the SISO decoder can be
obtained as follows:

kieðcqnÞ ¼ ln

P
an2A1

q
lian!Mn

ðanÞP
an2A0

q
lian!Mn

ðanÞ � ki�1
a ðcqnÞ: ð51Þ

Once the extrinsic LLRs kieðcqnÞ; 8q
	 


are available, the decoder performs decoding

and feeds back the a priori logarithm likelihood ratios (LLRs) kiaðcqnÞ; 8q
	 


which can
be used to compute the message liMn!anðanÞ.

b anð Þ ¼
Y
q

exp cqnk
i
a cqn
� �	 


1þ exp cqnkia cqnð Þ	 
 ð52Þ

liMn!anðanÞ ¼
b anð ÞP

an
b anð Þ : ð53Þ
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In Eq. (53), liMn!anðanÞ is a discrete probability distribution function about the
discrete random variable an. By applying the updating rules of SPA, the message
lian!JnðanÞ can be expressed as:

lian!JnðanÞ ¼ liMn!anðanÞ: ð54Þ

In summary, the messages passing in one turbo iteration are exactly derived as the
equations in this section shown. Because of the factor graph in Fig. 1 is loopy, we
consider a message passing form the bottom to the top and then back again as one turbo
iteration. At the beginning of the first turbo iteration, we set l0/n!In

ð/nÞ ¼ 1=p, 8n,
k0aðcqnÞ ¼ 0, 8q, 8n.

4 Simulation Results

In this section, we present the simulation results for the proposed algorithm. The
performance of the proposed algorithm is assessed in terms of bit error rate
(BER) versus Eb=N0. For each considered channel, we compare the proposed algorithm
with the conditional receiver of the CPM signals which uses the minimum mean
squared error (MMSE) frequency domain equalization (FDE) and the optimal BCJR
demodulator. In both receivers, we consider the 1=2� rate convolutional code with
generators G1 ¼ 91 and G2 ¼ 121 (octal notation) and the encoding length is 1024.

In Fig. 2, we consider a relatively simple scenario, AWGN channel, to verify the
performance of the algorithm proposed in Sect. 3. A binary CPM signal with frequency
pulse of duration L ¼ 1 symbol interval and the modulation index h ¼ 1=2 is

Fig. 2. 1RC modulation with h = 1/2 and M = 2 for AWGN channel.
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considered. When using the proposed algorithm, we set the parameters as follows
NL ¼ 1 and Lm ¼ 1. As shown in Fig. 2, we compare the BER performance of the
proposed algorithm and the BCJR method with and without the convolutional code
respectively. The performance of the two algorithms is similar in the scenario without
the convolutional code. When we consider the convolutional code in both systems, the
performance of the proposed algorithm using the turbo iteration is better than the BCJR
demodulation.

In Fig. 3, we consider an ISI channel (channel I) characterized by NL ¼ 2 and

h ¼ ½0:8165 0:5773�; s ¼ ½0 20� ð55Þ

in which the vector h denotes the gain of each path of the channel and the vector s
denotes the symbol number of the propagation delay for each path of the channel.
A quaternary CPM signal with frequency pulse of duration L ¼ 1 symbol interval and
the modulation index h ¼ 1=4 is considered. We set the parameters of the proposed
algorithm NL ¼ 2 and Lm ¼ 2. The length of FFT in the MMSE-FDE method is 1024.
In this scenario, the receiver with the MMSE-FDE and the BCJR demodulator and the
receiver using the proposed algorithm are considered. Similar to Fig. 2, we compare
the BER performance of the two methods with and without the convolutional code
respectively. As shown in Fig. 3, the performance of the two methods is similar
without the convolutional code. When take the convolutional code into account, the
performance of the proposed algorithm is better than the MMSE-FDE-BCJR receiver.

Fig. 3. 1RC modulation with h = 1/4 and M = 4 for Channel I
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In Fig. 4, we consider an ISI channel (channel II) characterized by NL ¼ 5 and

h ¼ ½0:7 0:2 0:05 0:03 0:02�; s ¼ ½0 5 10 15 20� ð56Þ

where the vector h denotes the gain of each path of the channel and the vector s denotes
the symbol number of the propagation delay for each path of the channel. A quaternary
CPM signal with frequency pulse of duration L ¼ 1 symbol interval and the modu-
lation index h ¼ 1=4 is considered. The parameters of the proposed algorithm are set as
NL ¼ 5, Lm ¼ 2. As shown in Fig. 4, the performance of the two methods is similar
without the convolutional code. And the performance of the proposed algorithm is
better than the MMSE-BCJR receiver with the convolutional code.

In terms of computational complexity, we point out that the decode parts in both
receivers is the same. They differ in the equalization part and the demodulation
part. For the equalization part, the computational complexity of the MMSE-FDE is
OðN log2 NÞ and that of the proposed algorithm is OðNNLÞ which is associated with the
number of the path of the channel. For the demodulation part, the computational
complexity of the BCJR algorithm is OðpMLNÞ while that of the proposed algorithm is
OðpðN þ 1ÞÞ.

5 Conclusion

Based on the Laurent decomposition and the Gaussian message passing, we presented a
low-complexity turbo iterative receiver of CPM signals. According the simulations of
different scenarios as shown in Sect. 4, the performance of the proposed algorithm is
similar to the receiver with the MMSE-FDE and the BCJR demodulator in uncoded
systems. When take the coding module into account, the proposed algorithm can
achieve better performance. Moreover, the proposed algorithm has lower computa-
tional complexity than the receiver with the MMSE-FDE and the BCJR demodulator.

Fig. 4. 1RC modulation with h = 1/4 and M = 4 for Channel II.
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