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Abstract. Non-orthogonal multiple access (NOMA) is a promising technology
in future communication systems due to high spectral efficiency. In this paper,
we propose an efficient power allocation method based on the genetic algorithm
(GA) to solve the non-linear optimization problem for maximizing the achiev-
able sum rate under a total power constraint and the users’ quality of service
(QoS) in the downlink NOMA systems. Different power allocation coefficients
can be obtained with different objective functions and optimization criteria.
Simulation results demonstrate that the NOMA systems with power allocation
using GA can achieve better performance than the orthogonal multiple access
(OMA) systems in terms of the achievable sum rate.
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1 Introduction

Along with the development of wireless communication technology, spectral scarcity
has become a serious problem [1]. Spectrum efficiency has ignited great interest from
both academia and industry. The traditional mobile communication systems are faced
with drastic changes and enormous challenges, including the explosive growth of
mobile data services and massive machine-type communications. The 5th generation of
communication systems (5G) will support high data rate communications, massive
device connections, ultra-low latency, high reliability, and so on [2]. But the con-
ventional multiple access technique-orthogonal multiple access (OMA) schemes, for
instance, frequency division multiple access (FDMA), time division multiple access
(TDMA), and code division multiple access (CDMA), will hardly meet those
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requirements and challenges in 5G. Non-orthogonal multiple access (NOMA) is a
promising multiple access technique for 5G communication systems with utilizing
superposition coding (SC) at the transmitter and successive interference cancellation
(SIC) [3] at the receiver. Compared to the conventional OMA, NOMA can be able to
support multi-users to share the same time-frequency resources [4]. In essence, the
NOMA systems achieve high spectral efficiency at the cost of increased receiver
complexity.

Power allocation in OFDMA has been well studied in [5, 6], however, power
allocation in the NOMA systems is still a challenging open problem and important for
optimizing the achievable sum rate under a total power constraint in the NOMA
downlink systems. Many previous works have already focused on power allocation for
the NOMA systems. In [7], a minorization-maximization algorithm (MMA) was
applied to maximize the downlink sum rate and the nonconvex optimization problem
was converted into a convex optimization problem. In [8], Choi proposed an approach
to optimize the sum capacity of multiple-input multiple output NOMA
(MIMO-NOMA) systems with layered transmissions which allocated power to multiple
layers and used the alternating maximization (AM) algorithm that can be regarded as a
two-block Gauss-Seidel method. In [9], the mutual information was chosen as the
optimal objective function to optimize power allocation for the maximum achievable
rate. In [10], Liu demonstrated that the performance of MIMO-NOMA is better than
MIMO-OMA in terms of the sum channel capacity (except for the case in which there
is only one user being communicated to).

The existing works about NOMA power allocation under the users’ QoS con-
straints are mostly analyzed for two users. In [11], a bisection search algorithm was
proposed along with a low complexity suboptimal algorithm to optimize two users’
ergodic capacity of MIMO-NOMA system under the total transmission power con-
straint and the minimum achievable rate constraint of the weak user. In [12], Wang
utilized the Karush–Kuhn–Tucker (KKT) conditions to obtain closed-form solutions
for maximizing the channel capacity in terms of two users’ power allocation under a
total power constraint and the QoS constraints of each user, and moreover extended the
solutions to a MIMO scenario. In [13], Oviedo proposed a Fair-NOMA that means the
two users are capable of achieving higher capacity in the NOMA systems than the
OMA systems. In [14], Choi proposed proportional fairness scheduling (PFS) to obtain
two users’ optimal power allocation with different criteria in the downlink NOMA
systems.

In this paper, we analyze the multi-user NOMA power allocation under a total
power constraint and the users’ QoS constraints, regardless of the user selection cri-
teria, and utilize the effective methods based on the genetic algorithm (GA) to solve the
nonconvex optimal problem. The rest of the paper is organized as follows. The system
model is outlined in Sect. 2. Section 3 formulates an optimization problem of power
allocation in the NOMA systems. Section 4 introduces the genetic algorithm. The
simulation results are presented and discussed in Sect. 5. Finally, the conclusions are
given in Sect. 6.
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2 System Model

Consider a downlink communication scenario, with a base station B equipped with a
single antenna and N users each equipped with a receive antenna; the base station B
transmits signal data to each user and the total transmitted total power is P; aiði ¼
1; 2. . .NÞ are the fractions of the total power allocated to the i-th user. The 1st user is the
weakest user (the furthest from the base station B), and the N-th user is the strongest user
(the nearest from the base station B). The channel fading coefficients hiði ¼ 1; 2. . .NÞ
satisfy the Gaussian distribution with zero mean and variance r2hn . The channels are

sorted as 0� h1j j2 � h2j j2. . .� hNj j2. The additive white Gaussian noise (AWGN) is
assumed to be normalized with zero mean and variance r2n. According to the NOMA
principle, the system will allocate more power to the users with weak channel conditions
and less power to the users with strong channel conditions. The users’ power allocation
coefficients are ordered as: a1 � a2 � . . .� aN . The weak user decodes its signal
information, and perceives the signal information from the strong user as interference
due to its less power. The strong user utilizes the SIC at the receiver and decodes its own
signal information after decoding and removing the reference induced by the weak user.

The multi-user NOMA scheme is shown as Fig. 1. It is shown that the i-th user can
decode and remove the m-th (when m\i) user’s signal information and perceive the
signal information from the k-th (when k[ i) users as interference since they are
negligible to the i-th user. In this way, the achievable rate for the i-th
i ¼ 1; 2; � � � ;N � 1ð Þ user is formulated as follows:

Fig. 1. Multiuser downlink system topology.
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Ri ¼ log2 1þ aiP hij j2
P hij j2PN

k¼iþ 1 ak þ r2n

 !
ð1Þ

The N-th user can decode and remove all the other users’ signal information. Thus,
the achievable rate of the N-th user is formulated as follows:

RN ¼ log2 1þ aNP hNj j2
r2n

 !
ð2Þ

Therefore, the system achievable sum rate is formulated as follows:

Rsum ¼
XN�1

i¼1

log2 1þ SINRið Þþ log2 1þ aNP hNj j2
r2n

 !
ð3Þ

where SINRi ¼ aiP hij j2
P hij j2

PN

k¼iþ 1
ak þr2n

; i ¼ 1; 2; � � � ;N � 1.

3 NOMA Power Allocation Problem Formulation

The different optimization power allocation coefficients can be obtained with different
optimization criteria, and the following describes two different optimization criteria.
One is to maximize the achievable sum rate to get the optimal power allocation; the
other is to maximize the weighted sum rate for obtaining the power allocation coeffi-
cients to calculate the capacity.

3.1 Maximize the Achievable Sum Rate

The optimal capacity is obtained by maximizing the achievable sum rate when each
user meets its quality of service (QoS) that refers to the minimum rate requirement. For
instance, the i-th user has to satisfy the inequality SINRi � ci, and the optimization
problem can be formulated as follows:

max
ai

Rsum

s:t: ðiÞ P
N

i¼1
ai ¼ 1

ðiiÞ 0� ai � 1
ðiiiÞ a1 � a2 � . . .� aN
ðivÞ SINRi � ci; i ¼ 1; 2; � � �N

ð4Þ

where 4; ið Þ represents the sum of all the users’ power is P; 4; iið Þ represents that the
lower bound and the upper bound of all the users’ power allocation coefficients; 4; iiið Þ
represents the NOMA principle that power allocated to the weaker user must be more
than that of the stronger user; and 4; ivð Þ expresses the constraints that the SINR of each
user must meet the targeted SINR ci to guarantee the QoS.
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Subsequently, the constraint 4; ivð Þ is analyzed and can be described in detail as (5).
aiP hij j2

P hij j2
PN

k¼iþ 1
ak þ r2n

� ci; i ¼ 2; 3; . . .;N � 1ð Þ

aNP hNj j2
r2n

� cN

8><
>:

ð5Þ

The bound of the power allocation coefficients a can be obtained and formulated as
follows:

1� ai � ci hij j2hþ 1
qð Þ

1þ cið Þ hij j2 ; i ¼ 1; 2; . . .;N � 1ð Þ
1� aN � cN

q hNj j2

8><
>:

ð6Þ

where q is the transmission SNR, q ¼ P
r2n
, set a0 ¼ 0, and get h ¼ 1�P

i�1

k¼0
ak;

0� h� 1ð Þ. The inequalities in (6) show the constraints between the users’ power
allocation coefficients induced by the users’ QoS constraints. The lower bound of
ai i ¼ 1; 2; . . .;Nð Þ are denoted as bi i ¼ 1; 2; . . .;Nð Þ. If bi � 1; i ¼ 1; 2; . . .;Nð Þ, it
means that the i-th user can’t be supported to meet the QoS, even if the BS allocates the
total power to the user.

We utilize 4 users to analyze the problem in detail as follows:

max
P3
i¼1

log2 1þ SINRið Þþ log2 1þ a4P h4j j2
r2n

� �

s:t: ðiÞ a1 þ a2 þ a3 þ a4 ¼ 1
ðiiÞ 0� a1 � 1; 0� a2 � 1; 0� a3 � 1; 0� a4 � 1
ðiiiÞ � a1 þ a2 � 0;�a2 þ a3 � 0;�a3 þ a4 � 0
ðivÞ � a1 � � g1;

�k2a1 � a2 � � g
2
;

�k3a1 � k3a2 � a3 � � g3;
�a4 � � c4

q h4j j2

ð7Þ

where ki ¼ ci
1þ ci

, gi ¼
ci hij j2 þ 1

qð Þ
1þ cið Þ hij j2 , and the constraints in (7) correspond to that in (4)

respectively.

3.2 Maximize the Weighted Sum Rate

We consider the weighted sum rate as the optimization objective function to allocate
power for multi-users and the objective function is shown as (8):

max
ai

Rweighted sum ¼
XN
i¼1

Ri�NOMA

Ri�OMA
ð8Þ
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where Ri�NOMA equals to Ri shown as Eqs. (1) and (2), Ri�OMA ¼ log2 1þP hij j2=r2n
� �

represents the users’ OMA capacity. The constraints of the problem (8) are the same
as (4). The optimal power allocation coefficients are obtained by optimizing the
problem (8) and substituted into (3) to obtain the optimal achievable sum rate.

In general, there is no analytical solutions for the multivariable optimization
problem, and the GA function in MTLAB can be used to obtain optimal power allo-
cation coefficients, but the computational process of the genetic algorithm is complex
and time-consuming.

4 Genetic Algorithm

Genetic algorithm is an optimization method inspired by the process of natural
selection that belongs to the evolutionary algorithms [15]. Traditionally, a population is
represented in binary as strings of 0s and 1s. In the genetic algorithm, a population of
candidate solutions to an optimization problem evolves towards to better solutions. The
solutions selected based on their fitness will be mutated and altered, and offspring will
be used to form a new population. The new population will be better than the old one.
The process will be repeated until there’s a solution satisfied.

The genetic algorithm process is as follows [16] and the flowchart of the algorithm
is shown as Fig. 2.

Step 1: Represent the problem domain as a chromosome of fixed length and
determine the number of chromosomes, generations, and mutation rate and cross-
over rate value;
Step 2: Choose the initial population;
Step 3: Evaluate the fitness of each individual chromosome by calculating the
objective function;
Step 4: Select a pair of chromosomes from the current population for mating, based
on their fitness scores (the better fitness, the bigger chance to be selected);
Step 5: Crossover from those parents to create a pair of offspring chromosomes;
Step 6: Mutation (maintain genetic diversity from one generation of a population to
the next);
Step 7: Return to Step3 and repeat the process until the termination (or optimiza-
tion) criterion is met;
Step 8: Get the solution.

The general iterative algorithm can easily fall into the local minimum, But GA is a
good way to overcome the drawback due to its good global search capabilities that can
find the best possible solution with a high probability. Compared with the traditional
optimization methods (enumeration, heuristic, etc.), GA has a good convergence and
high explorative ability. In addition, GA is widely used to solve function optimization
problems, combinatorial optimization problems, production scheduling problems,
adaptive control, robotics, image processing, genetic programming, data mining,
robotic learning, and artificial life. Although the genetic algorithm is applied in various
fields, it has its own shortcomings, for example, the local search ability and
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convergence is poor, and it takes a long time to find the optimal solution. The primary
problem is to improve the search ability and the convergence speed of the algorithm.

5 Numerical Results

In this section, the performance of the downlink NOMA systems with power allocation
using genetic algorithm is compared to that achieved by the OMA systems. For a given
downlink NOMA scheme with a base station and N users, the channel gains are
generated as hi ¼

ffiffiffiffiffiffiffiffi
d�l
i

p
gi, where gi � CN 0; 1ð Þ (i.e. r2hn ¼ d�l), l is the pass-loss

exponent l ¼ 2, and the distances between the base station and the users are fixed and
uniformly distributed between 1 and D. The noise power for each user is normalized to
r2n ¼ 1. The i-th user’s OMA capacity is given as: Comai ¼ 1=Nð Þlog2 1þð
P hij j2
� �

=r2nÞ; ði ¼ 1; 2; . . .;NÞ.
Figures 3 and 4 show the capacity of a user and the sum capacity versus P (dB) for

the NOMA schemes with power allocation using genetic algorithm and for the OMA
schemes.

Figure 3 compares three users’ achievable rate and the maximum sum rate of the
NOMA scheme acquired by maximizing the sum rate to that of the OMA scheme.
Simulation parameters for performance evaluation are given as follows. We will take
D = 11 and the distance vector between the three users and the base station is d0 ¼
11; 6; 1½ � meters. The vector of the users’ QoS is c0 ¼ ½�20;�15;�5� dB. The channels

crossover

mutation

Whether meet the 
termination criterion

Best 
solution

Selection

Roulette Wheel 

Fig. 2. The flowchart of genetic algorithm.
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need to satisfy the order of h1j j2 � h2j j2 � h3j j2 to ensure that the users’ signal infor-
mation can be decoded. The sum capacity and the third user’s capacity of the NOMA
system is higher than the capacity of the OMA system. The NOMA capacity of the first
user and the second user is lower than the OMA capacity.

Figure 4 depicts the four users’ capacity and the sum capacity for the NOMA and
OMA systems, and the NOMA power allocation is optimized by maximizing the sum
rate. Simulation parameters are set as follows. The distance vector is d00 ¼ 11; 7:67;½
4:33; 1� meters and the users’ QoS vector is c00 ¼ ½�30;�25;�20;�10� dB. The
channels need to satisfy the order of h1j j2 � h2j j2 � h3j j2 � h4j j2. The sum capacity and
the fourth user’s capacity of the NOMA system are higher than the capacity of the
OMA system while the others are lower than the capacity of the OMA system
respectively.

Figures 5 and 6 depict the achievable rate of 3 users and 4 users with power
allocation obtained by maximizing the weighted sum rate under the same simulation
parameters as Figs. 3 and 4, respectively. In both Figs. 5 and 6, the sum capacity of the
NOMA system is higher than the capacity of the OMA system. In Fig. 5, the NOMA
capacity of the first user and the third user is higher than the OMA capacity while the
second user’s capacity of the NOMA system is lower than the capacity of the OMA
system. In the Fig. 6, the NOMA capacity of the first user and the fourth user is higher
than the OMA capacity while the NOMA capacity of the second user and the third user
is lower than the OMA capacity.

Figure 7 compares the NOMA sum capacity optimized by maximizing sum rate
and weighted sum rate for three users and four users. The sum capacity obtained by
maximizing the weighted sum rate is lower than that obtained by maximizing the sum
rate for both three users and four users.

For the maximizing sum rate scenario, only the strongest user’s capacity and the
sum capacity of the NOMA system are higher than the capacity of the OMA system,
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respectively, while the other users’ capacity of the NOMA system is lower than that of
the OMA system, grows slowly and only satisfy the required SNR. For the maximizing
weighted sum rate scenario, except for the strongest user, the weakest user’s NOMA
capacity is also higher than the OMA capacity at the cost of the reduction of the sum
capacity shown as Fig. 7. Different optimal criteria will lead to different results, but the
NOMA systems is better than the OMA systems in terms of the sum capacity whatever
criteria is chosen.
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6 Conclusion

In this paper, we studied the capacity maximization problem under a total power
constraint and users’ QoS constraints for power allocation by utilizing GA in NOMA
downlink systems. We derived the optimal power allocation and obtained the optimal
capacity by maximizing the sum rate and the weighted sum rate. The simulation results
show that the performance of the NOMA system based on GA can achieve higher gain
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than the traditional OMA schemes when the channel state information is available to
the transmitters and different optimization criteria will induce different results. The
values of the users’ QoS is fixed in this paper and the dynamic QoS will be considered
in the future work. On the other hand, the solution obtained by a simple genetic
algorithm is time-consuming and the genetic algorithm is prone to premature con-
vergence in practical application. Therefore, the combination of genetic algorithm and
other algorithms will be studied in the future work.
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