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Abstract. Cooperative communication has emerged as a key technique in fifth
generation (5G) mobile wireless networks. In this paper, with incremental
decode-and-forward (IDF) relaying and transmit antenna selection (TAS), we
investigate the outage probability (OP) performance of mobile cooperative
networks. Exact closed-form expressions for OP with optimal TAS are derived.
These expressions are used to evaluate the impact of power allocation on OP
performance. Then we verify the mathematical derivations using Monte Carlo
simulations. The OP performance is influenced by power-allocation parameter.
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1 Introduction

The tremendous growth in mobile data traffic has created significant interest in the
development of fifth-generation (5G) wireless communication systems [1, 2]. Many
new technologies are being proposed for 5G mobile communications to satisfy the
demands, such as device-to-device (D2D), heterogeneous networks, ultra-dense net-
works, and massive multiple-input-multiple-output (MIMO) systems [3–5]. For
example, in cognitive small cells, the authors used cooperative Nash bargaining game
theory to investigate the power allocation problem in [5].

In 5G mobile wireless networks, cooperative communication is considered to be a
key technology. The authors investigated average bit error probability (BEP) perfor-
mance of threshold digital relaying, and incremental-selective decode-and-forward
(DF) relaying in [6, 7]. In [8], the authors investigated the outage probability
(OP) performance of incremental amplify-and-forward (AF) relaying.

The hardware complexity of MIMO systems increases with the number of anten-
nas. Transmit antenna selection (TAS) has been proposed to reduce this complexity.
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Using TAS, the authors investigated the OP performance of MIMO systems over
Nakagami-m fading channels in [9]. The authors investigated symbol error rate
(SER) performance of MIMO systems using TAS over η-µ fading channels in [10].
Further, using TAS and AF relaying, [11] provided new analysis results for OP and
SER of MIMO systems over Rayleigh fading channels.

Although there are many results in the literature on TAS, the performance has been
evaluated without considering the actual characteristics of a mobile communications
channel. For example, the performance of TAS has only been investigated over Rayleigh,
η-µ and Nakagami-m fading channels [9–11]. Recently, the N-Nakagami fading channel
has been proposed to more accurately characterize mobile communications channels.
Thus in this paper, TAS is considered for incremental delay-and-forward (IDF) relaying
mobile cooperative networks over N-Nakagami fading channels. We investigate OP
performance of optimal TAS, and the impact of the power allocation on OP performance
is examined. In addition, these expressions are evaluated using Monte Carlo simulation,
to verify the mathematical derivations.

The rest of the paper is organized as follows. Section 2 describes the mobile
cooperative network model. We investigate the OP performance of the optimal TAS
scheme in Sect. 3. Monte Carlo simulations are used to verify the mathematical
derivations in Sect. 4. We give some conclusions in Sect. 5.

2 The System Model

The mobile cooperative model is shown in Fig. 1. With the help of L single-antenna
mobile relay (MR) nodes, the mobile source (MS) node can communicate with the
mobile destination (MD) node. MS has Nt antennas, while MD has Nr antennas.

h ¼ hk; k 2 hSDij; hSRil; hRDlj
� �

represents the complex channel coefficients. h fol-
lows N-Nakagami distribution. The relative gain of the MSi ! MDj link is GSDij = 1,
the relative gain of MSi ! MRl is GSRil, the relative gain of MRl ! MDj is GRDlj. MS
and MRl use the total energy E in the two time slots.

MSi transmits the signal x in the first time slot. MDj and MRl receive the signals
rSDij and rSRil as

rSDij ¼
ffiffiffiffiffiffiffi
KE

p
hSDijxþ nSDij ð1Þ

rSRil ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GSRilKE

p
hSRilxþ nSRil ð2Þ

where K is the power allocation parameter, the mean and variance of nSRil and nSDij are
0 and N0/2 [12].

The best MR compares cSDij to a threshold cT, and determines whether or not to use
DF cooperation in the second time slot. The best MR is selected as follows

cRDij ¼ max
1� l�L

ðcRDljÞ ð3Þ
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where cRDlj represents the SNR of MRl ! MDj link, and

cRDlj ¼
ð1� KÞGRDlj hRDlj

�� ��2E
N0

¼ ð1� KÞGRDlj hRDlj
�� ��2�c ð4Þ

If cSDij > cT, the best MR will not participate in cooperation. MDj receives the SNR
as

c0ij ¼ cSDij ð5Þ

where

cSDij ¼
K hSDij
�� ��2E
N0

¼ K hSDij
�� ��2�c ð6Þ

If cSDij < cT, the best MR uses DF cooperation protocol. MDj receives the signal as

rRDj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� KÞGRDjE

q
hRDjxr þ nRDj ð7Þ

where the mean and variance of nRDj are 0 and N0/2.
MDj uses the selection combining (SC) scheme, and receives the SNR as

cSCij ¼ maxðcSDij; cRDijÞ ð8Þ

MMRR11

MMSS MMDD

MMRR22

MMRRLL

……

…… ……
Fig. 1. The system model
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MD receives the SNR as

cSCi
¼ max

1� j�Nr

ðcijÞ ð9Þ

where

cij ¼
c0ij; cSDij [ cT
cSCij; cSDij\cT

(
ð10Þ

The transmit antenna w is selected as follows

w ¼ max
1� i�Nt

ðcSCi
Þ ¼ max

1� i�Nt;1� j�Nr

ðcijÞ ð11Þ

3 The Optimal TAS OP

3.1 cth > cT

We obtain the OP as

Foptimal ¼ Prð max
1� i�Nt;1� j�Nr

ðcijÞ\cthÞ ¼

¼ PrðcT\cSD; c0\cthÞþ PrðcSD\cT; cSC\cthÞð ÞNt�Nr

¼ G1 þG2ð ÞNt�Nr

ð12Þ

where cth is the threshold.
The G1 is given as

G1 ¼ 1QN
d¼1

CðmdÞ
GN;1

1;Nþ 1
cth
cSD

YN
d¼1

md

Xd

1
m1;...:;mN ;0

���
" #

�

1QN
d¼1

CðmdÞ
GN;1

1;Nþ 1
cT
cSD

YN
d¼1

md

Xd

1
m1;...:;mN ;0

���
" # ð13Þ

cSD ¼ Kc ð14Þ

where G[�] is the well-known Meijer’s G-function, the fading coefficient is defined as
m, and the scaling factor is defined as X [13].
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The G2 is given as

G2 ¼ 1QN
d¼1

CðmdÞ
GN;1

1;N þ 1
cT
cSD

YN
d¼1

md

Xd

1
m1;...:;mN ;0

���
" #

�

1QN
t¼1

CðmtÞ
GN;1

1;Nþ 1
cth
cRD

YN
t¼1

mt

Xt

1
m1;...:;mN ;0

���
" #0

BBB@
1
CCCA

L ð15Þ

cRD ¼ ð1� KÞGRDc ð16Þ

3.2 cth < cT

We obtain the OP as

Foptimal ¼ PrðcSD\cT; cSC\cthÞð ÞNt�Nr

¼ PrðcSD\cthÞ PrðcRD\cthÞð ÞNt�Nr

¼ G11G22ð ÞNt�Nr

ð17Þ

The G11 is given as

G11 ¼ PrðcSD\cthÞ

¼ 1QN
d¼1

CðmdÞ
GN;1

1;Nþ 1
cth
cSD

YN
d¼1

md

Xd

1
m1;...:;mN ;0

���
" #

ð18Þ

The G22 is given as

G22 ¼ PrðcRD\cthÞ

¼ 1QN
t¼1

CðmtÞ
GN;1

1;Nþ 1
cth
cRD

YN
t¼1

mt

Xt

1
m1;...:;mN ;0

���
" #0

BBB@
1
CCCA

L

ð19Þ

4 Numerical Results

In this section, Monte Carlo simulations are used to verify the mathematical deriva-
tions. E = 1. We define l = GSR/GRD (in decibels) as the relative geometrical gain.
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Figure 2 presents the OP performance with cth = 5 dB, cT = 6 dB. Figure 3 pre-
sents the OP performance with cth = 5 dB, cT = 2 dB. The simulation parameters used
are as follows: N = 2, m = 2, K = 0.5, Nt = 1, 2, 3, L = 2, Nr = 1, l = 0 dB. From
Figs. 2 and 3, it is clear that Monte-Carlo simulation results and the analysis results
match. Further, increasing Nt improves the OP performance. For example, when
cth = 5 dB, cT = 2 dB, SNR = 10 dB, the OP is 2.9 � 10−1 with Nt = 1, 8.3 � 10−2

with Nt = 2, 2.4 � 10−2 with Nt = 3. With Nt fixed, increasing SNR decreases the OP.
The effect of K on OP performance is evaluated in Fig. 4. The simulation

parameters used are as follows: N = 2, m = 2, l = 0 dB, Nt = 2, L = 2, Nr = 2, cth =
5 dB, cT = 3 dB. Simulation results show that increasing SNR improves the OP per-
formance. For example, when K = 0.7, the OP is 2.8 � 10−1 with SNR = 5 dB,
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Fig. 2. The optimal TAS OP performance with cth < cT

2 4 6 8 10 12 14 16 18 20
10

-4

10
-3

10
-2

10
-1

10
0

SNR(dB)

O
P

Simulation OP
Theoretical OP

Nt=1,2,3

Fig. 3. The optimal TAS OP performance with cth > cT
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3.7 � 10−3 with SNR = 10 dB, 9.1 � 10−6 with SNR = 15 dB. When SNR = 5 dB,
K = 0.10; SNR = 10 dB, K = 0.10; SNR = 15 dB, K = 0.81. We obtain that K = 0.5
is not the best choice. For most applications, we can store the optimum power allo-
cation (OPA) values in a lookup table.

5 Conclusions

In this paper, with TAS, we investigate the OP performance of IDF relaying mobile
cooperative networks. Monte Carlo simulation was used to verify these expressions,
and to examine the effect of the power allocation on the OP performance. Future
research will consider the impact of correlated channels on the performance.
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