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Abstract. Massive multiple-input multiple-output (MIMO) systems can sub-
stantially improve the spectral efficiency and system capacity by equipping a
large number of antennas at the base station and it is envisaged to be one of the
critical technologies in the next generation of wireless communication systems.
However, the computational complexity of the signal detection in massive
MIMO systems presents a significant challenge for practical hardware imple-
mentations. This work proposed a novel minimum mean square error (MMSE)
signal detection method based on the accelerated overrelaxation (AOR) iterative
algorithm. The proposed AOR-based method can reduce the overall complexity
of the classical MMSE signal detection by an order of magnitude from O K3ð Þ to
O K2ð Þ, where K is the number of users. Numerical results illustrate that the
proposed AOR-based algorithm can outperform the performance of the recently
proposed Neumann series approximation-based algorithm and approach the
conventional MMSE signal detection involving exact matrix inversion with
significantly reduced complexity.
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1 Introduction

Multiple-input multiple-output (MIMO) is widely acknowledged as a key technology
for the fourth generation (4G) wireless communication systems [1, 2] due to the high
diversity gain and system channel capacity. However, the exponential increase of
mobile data traffic enabled by the wide proliferation of smartphones and tablet com-
puters poses great challenges for the current 4G systems [3]. Massive MIMO systems
which scale up the antennas at the base station (BS) by orders of magnitude contrasted
to the current systems (e.g., 4 or 8 antennas in 4G system) [4] can serve multi-users on
the same frequency band simultaneously [5]. Many research show that the large-scale
antennas at the BS can effectively average out non-coherent interference and system
noise. Massive MIMO system with large-scale antennas achieve significant enhance-
ments in terms of spectral efficiency, multiplexing gains, and robustness compared to
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the conventional MIMO systems [6], and it is envisaged to be the promising critical
technology in the fifth generation (5G) wireless communication systems [7].

However, the promised gains on the multiplexing capability of massive MIMO
systems come at the cost of the significant increase in signal detection complexity at
both sides of the wireless communication links [1]. The optimal signal detection in
MIMO systems is maximum likelihood (ML) signal detection in which the complexity
increases exponentially with the number of transmitting antennas, which imposes an
insurmountable cost for practical implementation in the massive MIMO systems [8].
The sphere decoding (SD) [9] can be utilized to simplify the hardware implementation
of the ML signal detection; however, the complexity changes along with the channel
condition and it is still quite high if the modulation order and/or the number of
transmitting antennas is high. The K-best algorithm [10] with fixed complexity is also a
popular method to simplify the ML detection, but the linear relationship between the
critical path length and the number of antennas poses serious challenges for the
large-scale MIMO systems. The linear signal detection such as the minimum mean
square error (MMSE) signal detection [1] is utilized in massive MIMO systems to trade
off the complexity and reliability; however, it incurs a complex matrix inversion
operation whose complexity is immense especially for the large dimension of antennas.
The Neumann series (NS) approximation-based algorithm has been proposed recently
in [11, 12] to alleviate the complex matrix inversion operation in traditional MMSE
signal detection, in which algorithm transforms the matrix inversion into a series of the
matrix-vector multiplications and additions. However, the bit error ratio (BER) per-
formance is unsatisfactory with small iteration numbers when the dimension of
antennas is moderately large. Furthermore, the large iteration numbers incur even
higher computational complexity compared to the classical MMSE signal detection.
Hence, it is highly desirable to design low-complexity high-performance signal
detection schemes that deliver acceptable BER performance and scale favorably to the
high-dimensional signal detection problems.

In this paper, we propose a novel MMSE signal detection method based on the
accelerated overrelaxation (AOR) iterative algorithm [13] for uplink massive MIMO
systems. The proposed detection scheme reconstructs the transmitted signal without the
complicated matrix inversion via an iterative operation. The symmetric positive definite
property of the MMSE filtering matrix is amenable to the AOR-based approach. We
provide a mathematical model of the AOR-based MMSE signal detection with a
convergence and complexity analysis. Numerical results show that the proposed
AOR-based algorithm can approach the BER performance of the classical MMSE
method in a few iterations and outperform the NS-based approach with significantly
reduced complexity.

The rest of the paper is structured as follows. In Sect. 2, the system model of the
uplink massive MIMO system is described. In Sect. 3, the low-complexity MMSE
signal detection based on the AOR iterative algorithm for uplink massive MIMO
system is proposed. The convergence and complexity analysis are presented in the
same section. In Sect. 4, the numerical results of the BER performance is specified.
Finally, conclusions are drawn in Sect. 5.
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Notation: Throughout the paper, upper-case boldface letters S and lower-case boldface
letters s denote matrices and vectors, respectively; S�1, ST and SH refer to the matrix
inversion, matrix transpose, and matrix conjugate transpose, respectively; O �ð Þ and
E �f g stand for the order of complexity and the expectation, respectively; = sf g and
< sf g represent the imaginary part and real part of the complex number, respectively; si
denotes the ith element of s; si;j denotes the ith row and jth column entry of matrix S;
Finally, IK is the K � K identity matrix.

2 System Model

Consider a representative uplink multi-user massive MIMO system consisting of N
antennas at the BS to serve K single-antenna users simultaneously [1], in which we
normally have N � K. The transmitted encoded and interleaved bit streams are
mapped to symbols by taking values from an energy-normalized quadrature amplitude
modulation (QAM) constellation.

Let xc 2 C
K�1 denotes the complex-valued transmitted signal vector. The entries of

the Rayleigh flat fading channel Hc 2 C
N�K are independently and identically (i.i.d.)

distributed and follow the complex Gaussian distribution CN 0; 1ð Þ with zero mean and
unit variance. nc 2 C

N�1 represents the additive white Gaussian noise (AWGN) vector
whose entries are i.i.d. and follow the distribution CN 0; r2ð Þ. yc 2 C

N�1 denotes the
received signal vector at the BS. Then the complex-valued uplink system model can be
expressed as

yc ¼ Hcxc þ nc: ð1Þ

For ease of representation, the complex-valued model can be converted into a
corresponding real-valued one as

< ycf g
= ycf g
� �

¼ < Hcf g �= Hcf g
= Hcf g < Hcf g
� � < xcf g

= xcf g
� �

þ < ncf g
= ncf g
� �

: ð2Þ

Then the real-valued uplink system model can be described as

y ¼ Hxþ n: ð3Þ

We assume the channel state information matrix H is known perfectly by receiver
via the assigned training sequence [14, 15]. Then the transmitted signal can be
reconstructed by the MMSE signal detector as

x̂ ¼ HHHþ r2I2K
� ��1

HHy ¼ W�1ŷ; ð4Þ

where x̂ is the reconstructed signal vector, W ¼ HHHþ r2I2K represents the MMSE
filtering matrix with a size of 2K � 2K, and ŷ ¼ HHy denotes the matched-filter output
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of y. It should be noted that the W�1 operation requires cubic computational com-
plexity O K3ð Þ and it is extremely high for the massive MIMO systems.

3 Proposed Low-Complexity MMSE Signal Detection
Method

3.1 MMSE Signal Detection Based on the AOR Iterative Algorithm

Unlike the conventional MIMO systems, things that were random before and now start
to look deterministic in large-scale MIMO systems [1]. Owing to the fact that the
column vectors of H are asymptotically orthogonal [1], it is obvious that the MMSE
filtering matrix W is symmetric positive definite in uplink massive MIMO systems.
This property inspires us to employ the AOR iterative algorithm to solve (4). The AOR
iterative algorithm [13] is a classical iterative scheme for the numerical solution of the
linear system x̂ ¼ W�1ŷ. Splitting W as W ¼ D� U� L, where D denotes the
diagonal element of W, U and L represent the negative of the strictly upper and lower
triangular element of W, respectively. Then the transmitted signal reconstructs by the
AOR scheme can be denoted as

x̂ nð Þ ¼ D� rLð Þ�1 1� xð ÞDþ x� rð ÞLþxU½ �x̂ n�1ð Þ þxŷ
n o

; ð5Þ

where the coefficient x and r represent the relaxation parameter and the acceleration
parameter, respectively; and the superscript n denotes the iteration number. The initial
iteration x̂ 0ð Þ is set as a zero vector and the notation Lr;x ¼ D� rLð Þ�1 1� xð ÞDþ½
x� rð ÞLþxU� denotes the iterative matrix.

3.2 Convergence Analysis

For uplink massive MIMO systems, the necessary and sufficient condition for the
AOR-based MMSE signal detection algorithm being convergent is q Lr;x

� �
\1 [16],

where the notation q Lr;x
� �

denotes the spectral radius of the iterative matrix Lr;x. The
spectral radius is defined as q Lr;x

� � ¼ max kr;x
�� ��, where kr;x is the eigenvalue of Lr;x.

Then the convergence condition for the AOR iterative algorithm can be given as
follows [17, 18]

1ð Þ 0\x � r\ 2

2ð Þ 0\ r\x\ 2 mink0;1 � 0
� �

3ð Þmax 0;xþ 2� x
mink0;1

� �
\ r\x\ 2 min k0;1 \ 0

� �
;

ð6Þ

where min k0;1 denotes the minimum eigenvalue of the Jacobi iteration matrix as
L0;1 ¼ D�1 LþUð Þ.
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3.3 Computational Complexity Analysis

In this subsection, we evaluate the complexity of the proposed AOR-based MMSE
signal detection algorithm. The hardware complexity is mainly dominated by the
multipliers, so we define the complexity as the number of multiplications. Rewrite (5) as

x̂ nð Þ ¼ 1� xð Þx̂ n�1ð Þ þxD�1 ŷþ r
x
Lx̂

nð Þ þ 1� r
x

	 

LþU

h i
x̂ n�1ð Þ

� �
: ð7Þ

Considering the definition of the matrix D, L and U, Eq. (7) can be expressed as

x̂ nð Þ
i ¼ 1� xð Þx̂ n�1ð Þ

i þ x
wi;i

ŷi þ r
x

Xi�1

j¼1

wi;jx̂
nð Þ
j þ 1� r

x

	 
Xi�1

j¼1

wi;jx̂
n�1ð Þ
j þ

X2K
j¼iþ 1

wi;jx̂
n�1ð Þ
j

 !
:

ð8Þ

where the parameter r
x can be calculated separately. The number of multiplications

required for computation of 1� xð Þx̂ n�1ð Þ
i , r

x

Pi�1

j¼1
wi;jx̂

nð Þ
j ,

P2K
j¼iþ 1

wi;jx̂
n�1ð Þ
j and

1� r
x

� �Pi�1

j¼1
wi;jx̂

n�1ð Þ
j are 1, i, 2K � i and i, respectively, so the required number of

multiplications for x̂ nð Þ
i is 2K þ iþ 3. Thus, the overall complexity for one iteration isP2K

i¼1
2K þ iþ 3 ¼ 6K2 þ 7K.

Table 1 compares the complexity of the proposed AOR-based algorithm with that
of NS-based algorithm. The classical MMSE signal detection with exact matrix
inversion operation has cubic computational complexity O K3ð Þ. Table 1 illustrates the
complexity of the NS-based algorithm scales with O K2ð Þ only for n ¼ 2. However, the
proposed AOR-based algorithm can decrease the complexity by an order of magnitude
from O K3ð Þ to O K2ð Þ.

4 Simulation Results

To verify the validity of the proposed AOR-based MMSE signal detection, we eval-
uated the BER performance against the signal-to-noise ratio (SNR) and compared it
with the recently proposed NS-based algorithm [11, 12]. The BER performance of the
classical MMSE signal detection with exact matrix inversion was also given as the

Table 1. Computational complexity

Iteration number NS-based algorithm AOR-based algorithm

n ¼ 2 12K2 � 2K 12K2 þ 14K
n ¼ 3 8K3 þ 4K2 18K2 þ 21K
n ¼ 4 16K3 � 4K2 þ 2K 24K2 þ 28K
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benchmark for comparison. A representative massive MIMO system scenario with
N � K ¼ 128� 16 and the 64-QAM modulation scheme was adopted.

Figure 1 shows the BER performance of the proposed AOR-based MMSE signal
detection versus the relaxation parameter x and the acceleration parameter r in a
three-dimensional way. The SNR is 15 dB and the iteration number is n ¼ 3. The
optimal parameters can achieve a faster convergence rate and a preferable performance.
As shown in Fig. 1, the BER performance difference is negligible when the parameters
are close to x¼ 1:10 and r ¼ 1:05, indicating the robustness of the proposed method.
So we chose the optimal relaxation and acceleration parameter as xopt ¼ 1:10 and
ropt ¼ 1:05 in the following simulations.

Next we evaluate the influence of the relaxation and acceleration parameters on the
convergence rate. Figure 2 illustrates the BER performance of the proposed
AOR-based MMSE signal detection versus the relaxation parameter x with the
acceleration parameter r being fixed. Figure 3 illustrates the BER performance of the
proposed AOR-based MMSE signal detection versus the acceleration parameter r with
the relaxation parameter x being fixed. The BER curve behaves like a quadratic
function curve. The BER performance initially improves with the value of x up to
approximately 1.10 and then starts to deteriorate for higher values. It is worth noting
that the BER performance are extremely sensitive to the variation of the relaxation
parameter with the fixed acceleration parameter. So we conclude that the relaxation
parameter x plays a dominant role in the convergence of the algorithm while the

Fig. 1. BER performance of the AOR-based algorithm versus x and r. The SNR is 15 dB and n
is 3.
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Fig. 2. BER performance of the AOR-based algorithm versus x. The SNR is 15 dB and n is 3.

Fig. 3. BER performance of the AOR-based algorithm versus r. The SNR is 15 dB and n is 3.
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acceleration parameter r can expedite the convergence rate to some extent in the
proposed AOR-based MMSE signal detection. Based on this finding, a more robust
system can be realized by selecting a proper acceleration parameter despite a small
variation of the relaxation parameter. Numerical results show that the optimal relax-
ation parameter xopt can be set around 1.10 while the corresponding optimal accel-
eration parameter ropt is close to xopt.

Figure 4 provides the BER performance comparison for different detection algo-
rithms. It is apparent that the BER performance improves significantly with the
increasing iteration number of the proposed algorithm. The BER performance of the
AOR-based algorithm outperforms the NS-based algorithm with the same iteration
number due to the faster convergence rate of the AOR iterative algorithm. For example,
the proposed AOR-based method with n ¼ 2 can even achieve similar performance
levels as the NS-based method with n ¼ 4. The BER performance of the AOR-based
algorithm approaches the traditional MMSE method within 0:1 dB when the iteration
number is n ¼ 3 for the N � K ¼ 128� 16 massive MIMO systems.

5 Conclusions

In this paper, we proposed a low-complexity MMSE signal detection based on the
AOR iterative algorithm for uplink massive MIMO systems. The proposed AOR-based
algorithm reconstructs the transmitting signal via a relaxation and acceleration

Fig. 4. BER performance comparison versus SNR.
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operation to refine the solution estimate in an iterative manner. Numerical results
illustrate that the proposed AOR-based algorithm can obtain better BER performance
than the recently proposed NS-based algorithm and approach the performance of the
classical MMSE signal detection with a significantly reduced complexity. Owing to the
superiority of the low-complexity AOR iteration algorithm, it can be utilized to solve
other problems involving complicated matrix inversion operations such as the pre-
coding technique in massive MIMO systems.
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