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Abstract. In this paper, a computationally efficient message-passing
receiver that performs joint channel estimation and decoding is pro-
posed for massive multiple-input multiple-output (MIMO) systems with
OFDM modulation. We combine the loopy belief propagation (LBP)
with the mean-field approximation and Gaussian approximation to
decouple frequency-domain channel taps and data symbols from noisy
observations. Specifically, pair-wise joint belief of frequency-domain
channel tap and symbol is obtained by soft interference cancellation,
after which the marginal belief of frequency-domain channel tap and
symbol are estimated from the pair-wise joint belief by the mean-field
approximation. To estimate time-domain channel taps between each pair
of antennas, a Gaussian message passing based estimator is applied. The
whole scheme of joint channel estimation and decoding is assessed by
Monte Carlo simulations, and the numerical results corroborate the supe-
rior performance of the proposed scheme and its superiority to the state
of art.
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1 Introduction

Recently, massive MIMO systems with a large number of antennas at the base-
station have gained great attention [1–6]. Accurate channel state information
(CSI) is essential in massive MIMO systems, as high data rate and energy effi-
ciency are achievable only when CSI is known. In TDD mode, the available
training resources are limited by the channel coherence interval [7]. In contrast
to conventional MIMO systems with a small number of antennas, the overhead
required for channel estimation in massive MIMO systems may be overwhelm-
ing. Therefore, accurate channel estimation with reduced overhead is critical to
massive MIMO systems.
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A receiver that jointly estimates channel taps and data symbols can provide
more accurate channel estimation with less pilot overhead [8–11]. Factor graph
and loopy belief propagation (LBP) [12] have been used as a unified framework
for iterative joint detection, estimation, interference cancellation, and decoding
[13]. LBP algorithm combined with various approximate method has been pro-
posed in [9,14–20]. Specifically, LBP combined with expectation-maximization
(EM) was proposed in [16]; LBP combined with Gaussian approximation was
studied in [9,16,17,21]. Riegler et al. merged LBP and the mean-field (MF)
approximation (so called “BP-MF”) in [19,22], and applied it to both single-
input single-output OFDM systems and MIMO-OFDM systems [19,22,23]. How-
ever, the BP-MF has to learn the noise precision to take into count the interfer-
ence from other users even when the noise power is exact known [24,25]. More-
over, the BP-MF in [22] requires high computational complexity and would only
work in the case of few antennas and subcarriers, since large matrices need to
be inverted to estimate channel coefficients. Although low-complexity BP-MF
variants have been presented in [26,27], their performance are degraded.

In this paper, we consider the massive MIMO-OFDM system over frequency
selective channels. In order to decouple frequency-domain channel taps and
transmit symbols from noisy observations, we use the central-limit theorem to
efficiently obtain the joint belief of each pair of frequency-domain channel tap
and transmit symbol, and then employ the mean-field method to decouple them.
Given messages of frequency-domain channel taps are extracted from observa-
tions, the time-domain channel taps between each pair of antennas is estimated
by a Gaussian message passing estimator [20]. In addition, the computations at
symbol variables are reduced by the expectation propagation [28–30].

The remainder of this paper is organized as follows. The system model is
described in Sect. 2. Section 3 presents the proposed message passing algorithm
and complexity analysis. Numerical results are presented in Sect. 4, followed by
conclusions in Sect. 5.

Notation: Lowercase letters (e.g., x) denote scalars, bold lowercase letters
(e.g., x) denote column vectors, and bold uppercase letters (e.g., X) denote
matrices. The superscripts (·)T, (·)H and (·)∗ denote the transpose operation,
Hermitian transpose operation, and complex conjugate operation, respectively.
Also, X⊗Y denotes Kronecker product of X and Y ; I or Id denotes an identity
matrix of size d × d, and ln (·) denotes the natural logarithm. Furthermore,
NC (x; x̂, vx) = (πvx)−1 exp

(
− |x − x̂|2 /

vx

)
denotes the Gaussian probability

density function (PDF) of x with mean x̂ and variance v, and Gam (λ;α, β) =
βαλα−1exp (−βλ)

/
Γ (α) denotes the Gamma PDF of λ with shape parameter

α and rate parameter β, where Γ(·) is the gamma function. Finally, ∝ denotes
equality up to a constant scale factor; x\xtnk denotes all elements in x but xtnk;
and Ep(x)· denotes expectation with respect to distribution p (x).
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Fig. 1. Block-diagram representation of the transmitters.

2 System Model

We consider the up-link of a massive MIMO system with N users. Each user
employs one transmit antenna, and the base station employs an array of M ≥ N
antennas. Frequency-selective Rayleigh fading channels are assumed, and OFDM
is employed to combat multipath interference. The transmitters for the users are
shown in Fig. 1. For the nth user, the information bits bn are encoded and inter-
leaved, yielding a sequence of coded bits cn. Then each Q bits in cn are mapped
onto one modulation symbol, which is chosen from a 2Q-ary constellation set A,
i.e., |A| = 2Q. The data symbols xd

n are then multiplexed with pilot symbols
xp

n, forming the transmitted symbols sequence xn. Pilot and data symbols are
arranged in an OFDM frame of T OFDM symbols, each consisting of K subcar-
riers. More specifically, there are totally Kp pilot subcarriers in an OFDM frame
and the pilot subcarriers are spaced �K/(Kp − 1)� subcarriers apart. The pilot-
subcarrier set of user n is denoted by Pn = {(t, k) : xtnk is pilot}, |Pn| = TpKp,
and data-subcarrier set is denoted by D =

⋃
n Pn. Note that pilot-subcarrier

sets belong to different users are mutual exclusive, i.e.,
⋂

n Pn = ∅, and only
one user actually transmits a pilot symbol at a given pilot subcarrier, whereas
the other users keep silent, i.e., if (t, k) ∈ Pn, then xtn′k = 0, ∀n′ 
= n. The
frequency-domain symbols in the tth OFDM symbol transmitted by the nth user
are denoted by xtn = [xtn1, . . . , xtnK ]T, where xtnk ∈ A represents the symbol
transmitted at the kth subcarrier. To modulate the OFDM symbol, a K-point
inverse discrete Fourier transform (IDFT) is applied to the symbol sequence xtn,
and then a cyclic prefix (CP) is added to it before transmission.

The OFDM symbols are transmitted through a wide-sense stationary uncor-
related scattering (WSSUS) channel. It is assumed that the time-domain channel
taps keep static during one OFDM frame but vary from frame to frame. The
time-domain channel taps from the nth user to the mth receive antenna are
denoted by hmn = [hmn1, . . . , hmnL]T, where hmnl is the lth channel tap, and L
is the maximum number of channel taps. Then, the frequency-domain tap wmnk

at the kth subcarrier from the nth user to the mth receiving antenna reads

wmnk =
L∑

l=1

hmnlexp

(
−j2πlk

K

)
. (1)
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At each receive antenna, the CP is first removed and the received signal is
then converted into the frequency-domain through a K-point discrete Fourier
transform (DFT). It is assumed that the N transmitters and the receiver are
synchronized and the maximum delays are smaller than the duration of the CP,
whereby the received signal for the tth OFDM symbol can be written as

ytmk =
N∑

n=1

wmnkxtnk + �tmk, (2)

where ytmk denotes the received signal at the kth subcarrier on the mth receive
antenna, �tmk denotes a circularly symmetric complex noise with zero mean and
variance σ2

�. The received signal can be recast in a matrix-vector notation as

y =
N∑

n=1

W nxn + � = Wx + �, (3)

where y =
[
yT

1 · · · yT
M

]T with ym = [y1m1 · · · y1mK · · · yTm1 · · · yTmK ]T denot-
ing the received signal at the mth receive antenna for T OFDM symbols, W n =
[IT ⊗ diag {w1n·} · · · IT ⊗ diag {wMn·}]T with wmn· = [wmn1 · · · wmnK ]T denot-
ing the frequency-domain taps from the nth user to the mth antenna, W =
[W 1 · · · W N ], x =

[
xT

1 · · · xT
N

]T with xn =
[
x1n1 · · · x1nK · · · xTn1 · · · xTnK

]T
denoting the symbols transmitted by the nth user, and � =

[
�T

1 · · · �T
M

]T
with �m = [�1m1 · · · �1mK · · · �Tm1 · · · �TmK ]T denoting the noise signal at
the mth receive antenna.

3 Message Passing for Joint Detection and Decoding

We aim to jointly estimate the information bits b =
[
bT
1 · · · bTN

]
and channel

taps h =
[
hT

11· · · · hT
1N · · · · hT

M1· · · · hT
MN ·

]T
from the noisy observation y. The

joint PDF of all involved random variables can be factorized as follows,

p (b, c,x,y,W ,h)
= p (b) p (c | b) p (x | c) p (y | W ,x) p (h,W )

= p (b) p (c | b)
N∏

n=1

∏
(t,k)∈D

Mtnk (xtnk, ctnk)
∏

t,m,k

ftmk (xt·k,wtmk)

×
∏

m,n,k

gmnk (wmnk,hmn·)
∏

m,n,l

p (hmnl) , (4)

where Mtnk (xtnk, ctnk) = δ (ϕ (ctnk) − xtnk) denotes the deterministic mapping
xtnk = ϕ (ctnk), ϕ (ctnk) denotes the symbol mapping function, and δ (·) denotes
the Kronecker delta function. The channel transition function ftmk(xt·k,wmnk)
is given by
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ftmk(xt·k,wmnk) = NC

(
ytmk;

∑
n

wmnkxmnk, σ2
�

)
. (5)

As the frequency-domain channel taps wmnk is the DFT (discrete Fourier
transform) of time-domain taps hmn·, we have

gmnk (wmnk,hmn·) = δ

(
wmnk −

L∑
l=1

φklhmnl

)
, (6)

where Φ ∈ C
K×L denotes the DFT weighting matrix, and φkl denotes the entry

in the kth row and lth column of DFT weighting matrix Φ. The probabilistic
structure exposed by the factorization (4) can be represented with a factor graph,
as depicted in Fig. 2. Due to high-dimensional integration, directly computing the
marginal probability of information bit is computationally prohibitive. Hence,
we resort to LBP to offer efficient solutions. As shown in Fig. 2, there exist two
groups of loops, the group of detection-decoding-loops in the left and the group
of the channel-estimation-loops in the right. Here, we choose to start passing
messages at the channel transition nodes, then pass messages concurrently in
both the detection-decoding-loop (the left loop) and the channel-estimation-loop
(the right loop). Each of these full cycles of message passing will be referred to
as a “turbo iteration”.

Fig. 2. Factor graph of the Massive MIMO-OFDM system.

The presentation of message passing follows closely with the convention in
[12]. All types of message are specified in Table 1. Applying the SPA to the factor
graph in Fig. 2, the messages from the channel transition node ftmk at the ith
iteration are given by
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Table 1. SPA message definitions at iteration i ∈ Z.

μ
(i)
tnk�tmk (·) Message from node ftmk to node xtnk

μ
(i)
tnk�tnk (·) Message from node xtnk to node Mtnk

μ
(i)
tnk�tnk (·) Message from node Mtnk to node xtnk

μ
(i)
tnk�tmk (·) Message from node xtnk to node ftmk

μ
(i)
tmk�mnk (·) Message from node ftmk to node wmnk

μ
(i)
mnk�mnk (·) Message from node wmnk to node gmnk

μ
(i)
mnk�mnl (·) Message from node gmnk to node hmnl

μ
(i)
mnl�mnk (·) Message from node hmnl to node gmnk

μ
(i)
mnk�mnk (·) Message from node gmnk to node wmnk

μ
(i)
tmk�mnk (·) Message from node wmnk to node ftmk

β
(i)
tnk (·) Belief of xtnk at node xtnk

β
(i)
mnk (·) Belief of wmnk at node wmnk

μ
(i)
tnk�tmk (xtnk) =

∑
xt·k\xtnk

∫

wmk

(
ftmk (xt·k,wm·k)

×
N∏

n′=1

μ
(i−1)
tmk�mn′k (wmn′k)

N∏
n′′ �=n

μ
(i−1)
tn′′k�tmk (xtn′′k)

)
,∀n,

(7)

μ
(i)
tmk�mnk (wmnk) =

∑
xt·k∈AN

∫

wm·k\wmnk

(
ftmk (xt·k,wm·k)

×
∏

n′ �=n

μ
(i−1)
tmk�mn′k (wmn′k)

∏
n′′

μ
(i−1)
tn′′k�tmk (xtn′′k)

)
,∀n. (8)

As each symbol of xt·k\xtnk ∈ AN−1 takes on values in the discrete set A, the
computations of μ

(i)
tnk�tmk (xtnk) and μ

(i)
tmk�mnk (wmnk) require exponential time

to marginalize out the random vector xt·k\xtnk, which are obviously intractable
for the problem size of interests. Using (5), the messages with respect to known
pilot symbol boil down to the following simple form

μ
(i)
tmk�mnk (wmnk) ∝ NC

(
wmnk;

ytmk

xtnk
,

σ2
�

|xtnk|2
)

,∀ (t, k) ∈ Pn (9)

μ
(i)
tmk�mn′k(wmn′k) ∝ NC (wmn′k; 0,∞) ,∀n′ 
= n, (10)

where we make use of the fact that other users keep silent on the pilot subcar-
riers Pn.
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3.1 LBP Combined with Gaussian Approximation and Mean-Field
Approximation

Note that, to update the outgoing messages from the observation node ftmk, the
received signal in (2) can be rewritten as

ytmk = wmnkxtnk +
N∑

n′ �=n

wmn′kxtn′k + �tmk,∀n. (11)

The interference term
∑

n′ �=n wmn′kxtn′k + �tmk in (11) is considered as a

Gaussian variable with mean z̃
(i)
tnk�tmk and variance τ

(i)
tnk�tmk,

z̃
(i)
tnk�tmk =

∑
n′ �=n

ŵ
(i−1)
tmk�mn′kx̂

(i−1)
tn′k�tmk,

τ
(i)
tnk�tmk = σ2

� +
∑
n′ �=n

(∣∣ŵ(i−1)
tmk�mn′k

∣∣2ν(i−1)
tn′k�tmk

+
∣∣x̂(i−1)

tn′k�tmk

∣∣2ν(i−1)
tmk�mn′k + ν

(i−1)
tn′k�tmkν

(i−1)
tmk�mn′k

)
. (12)

where ŵ
(i−1)
tmk�mn′k and ν

(i−1)
tmk�mn′k denote the mean and variance of variable

xtnk with respect to the message μ
(i−1)
tmk�mn′k (wmnk), respectively; x̂

(i−1)
tn′k�tmk and

ν
(i−1)
tn′k�tmk denote the mean and variance of variable wmnk with respect to mes-

sage μ
(i−1)
tn′k�tmk (xtnk), respectively. As a result, the channel transition function

ftmk can be approximated as

ftmk(xt·k,wk
m) ≈ NC(wmnkxtnk; z(i)

tmk�mnk, τ
(i)
tmk�mnk),∀n, (13)

where z
(i)
tmk�mnk = ytmk − z̃

(i)
tnk�tmk.

Using (13), a local joint belief of wmnk and xtnk is defined as

β
(i)
tmk (wmnk, xtnk) ∝ NC(xtnkwmnk; z(i)

tmk�mnk, τ
(i)
tmk�mnk)

× μ
(i−1)
tmk�mnk (wmnk) μ

(i−1)
tnk�tmk (xtnk) , (14)

In order to maintain the message passing analytically and efficiently, we
project the joint belief β

(i)
tmk (wmnk, xtnk) onto a fully factorized belief

β̃
(i)
tmk (wmnk, xtnk) = β̃

(i)
tmk (xtnk) β̃

(i)
tmk (wmnk), using the criterion of minimum

inclusive KL divergence [31]

min
β̃
(i)
tmk(wmnk,xtnk)

KL
(
β̃

(i)
tmk (wmnk, xtnk) ‖ β

(i)
tmk (wmnk, xtnk)

)
, (15)

which amounts to the mean-field approximation in statistical physics. However,
finding a global optimal solution to (15) is difficult, and hence, we instead resort
to a local form of optimization. We use alternative measures to find the local
beliefs β̃

(i)
tmk (xtnk) and β̃

(i)
tmk (wmnk) at the function node ftmk
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KL
(
β̃

(i)
tmk (xtnk) β̃

(i−1)
tmk (wmnk) ‖ β

(i)
tmk (wmnk, xtnk)

)
, (16)

KL
(
β̃

(i)
tmk (wmnk) β̃

(i−1)
tmk (xtnk) ‖ β

(i)
tmk (wmnk, xtnk)

)
, (17)

where the local beliefs β̃
(i−1)
tmk (wmnk) and β̃

(i−1)
tmk (xtnk) at variable nodes xtnk

and wmnk, respectively, are defined later. Using variational calculus, β̃
(i)
tmk (xtnk)

and β̃
(i)
tmk (wmnk) fulfill following updates1

β̃
(i)
tmk (xtnk) = exp

(
E

β
(i−1)
mnk (wmnk)

lnβ
(i)
tmk (wmnk, xtnk)

)
, (18)

β̃
(i)
tmk (wmnk) = exp

(
E

β
(i−1)
tnk (xtnk)

lnβ
(i)
tmk (wmnk, xtnk)

)
. (19)

According to the semantics of factor graph, the messages μ
(i)
tnk�tmk (xtnk) ,∀n

and μ
(i)
tmk�mnk (wmnk) ,∀n then are updated as follows

μ
(i)
tnk�tmk (xtnk) =

β̃
(i)
tmk (xtnk)

μ
(i−1)
tnk�tmk (xtnk)

∝ NC

(
xtnk; x̂(i)

tnk�tmk, ν
(i)
tnk�tmk

)
,

μ
(i)
tmk�mnk (wmnk) =

β̃
(i)
tmk (wmnk)

μ
(i−1)
tmk�mnk (wmnk)

∝ NC

(
wmnk; ŵ(i)

tmk�mnk, ν
(i)
tmk�mnk

)
,

(20)

where

ν
(i)
tnk�tmk =

τ
(i)
tmk�mnk

ν
(i−1)
mnk +

∣∣∣ŵ(i−1)
mnk

∣∣∣
2 , (21)

x̂
(i)
tnk�tmk =

ν
(i)
tnk�tmk

τ
(i)
tmk�mnk

ŵ
(i−1)
mnk

∗z(i)
tnk�tmk, (22)

ν
(i)
tmk�mnk =

τ
(i)
tmk�mnk

ν
(i−1)
tnk +

∣∣∣x̂(i−1)
tnk

∣∣∣
2 , (23)

ŵ
(i)
tmk�mnk =

ν
(i)
tmk�mnk

τ
(i)
tmk�mnk

x̂
(i−1)
tnk

∗z(i)
tmk�mnk. (24)

with z
(i)
tnk�tmk and τ

(i)
tmk�mnk having the same definitions as that of (12) and

(12), respectively. Next, the local belief at the variable node xtnk is updated by

1 For the sake of efficient implementation, we consider to update all the beliefs con-
currently in this paper.
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β
(i)
tnk (xtnk) =

μ
(i)
tnk�tnk (xtnk)

∏
m μ

(i)
tnk�tmk (xtnk)∑

xtnk∈A μ
(i)
tnk�tnk (xtnk)

∏
m μ

(i)
tnk�tmk (xtnk)

=
μ

(i)
tnk�tnk (xtnk) NC(xtnk; ζ(i)

tnk, γ
(i)
tnk)∑

xtnk∈A μ
(i)
tnk�tnk (xtnk) NC(xtnk; ζ(i)

tnk, γ
(i)
tnk)

, (25)

where

γ
(i)
tnk =

1∑M
m=1

1

ν
(i)
tnk�tmk

, (26)

ζ
(i)
tnk = γ

(i)
tnk

M∑
m=1

x̂
(i)
tnk�tmk

ν
(i)
tnk�tmk

. (27)

Then the message μ
(i)
tnk�tnk (xtnk) from the variable node xtnk to the mapper

node Mtnk is updated by

μ
(i)
tnk�tnk (xtnk) =

M∏
m=1

μ
(i)
tnk�tmk (xtnk) ∝ NC

(
xtnk; ζ(i)

tnk, γ
(i)
tnk

)
. (28)

With the message μ
(i)
tnk�tnk (xtnk) and the a priori LLRs

{
λ

(i−1)
a (cq

tnk) ,∀q
}

fed

from decoder, the extrinsic LLRs {λ
(i)
e (cq

tnk) ,∀q} corresponding to the symbol
xtnk are obtained

λ(i)
e (cq

tnk) = ln

∑
xtnk∈A1

q
μ

(i−1)
tnk�tnk (xtnk) μ

(i)
tnk�tnk (xtnk)

∑
xtnk∈A0

q
μ

(i−1)
tnk�tnk (xtnk) μ

(i)
tnk�tnk (xtnk)

− λ(i−1)
a (cq

tnk) . (29)

Once all the extrinsic LLRs {λ
(i)
e (cq

tnk) ,∀t,∀n,∀k,∀q} are available, each chan-
nel decoder performs decoding and updates the a priori LLRs of coded bits.
Then, the a priori LLRs

{
λ

(i)
a (cq

tnk)
}

are interleaved and converted to the mes-
sage

μ
(i)
tnk�tnk (xtnk) =

Q∏
q=1

exp
(
cq
nλ

(i)
a (cq

tnk)
)

1 + exp
(
λ

(i)
a (cq

tnk)
) . (30)

Direct evaluating
{

x̂
(i)
tnk�tmk, ν

(i)
tnk�tmk

}
via μ

(i)
tnk�tmk (xtnk) is expensive, as the

number of
{

x̂
(i)
tnk�tmk, ν

(i)
tnk�tmk,∀t,∀m,∀n

}
is up to TMN . Following the expec-

tation propagation method proposed in [28], we can reduce the computational
complexity of

{
μ̂

(i)
tnk�tmk (xtnk)

}
. We consider every transmitted symbol xtnk as

a continuous random variable and will approximate its message μ
(i)
tnk�tmk (xtnk)

as a complex Gaussian PDF μ̂
(i)
tnk�tmk (xtnk) = NC

(
xtnk; x̂(i)

tnk�tmk, ν
(i)
tnk�tmk

)
.
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The symbol belief β
(i)
tnk (xtnk) at the variable node is projected into a Gaussian

PDF denoted by β̂
(i)
n (xtnk) = NC

(
xtnk; x̂(i)

tnk, ν
(i)
tnk

)
, where

x̂
(i)
tnk =

∑
αs∈A

αsβ
(i)
tnk (xtnk = αs) , (31)

ν
(i)
tnk =

∑
αs∈A

|αs|2 β
(i)
tnk (xtnk = αs) −

∣∣∣x̂(i)
tnk

∣∣∣
2

. (32)

Then the approximate message μ̂
(i)
tnk�tmk (xtnk) is computed from the approxi-

mate symbol belief β̂
(i)
n (xtnk) as following

μ̂
(i)
tnk�tmk (xtnk) ≈ β̂

(i)
n (xtnk)

μ
(i)
tnk�tmk (xtnk)

∝ NC(xtnk; x̂(i)
tnk�tmk, ν

(i)
tnk�tmk), (33)

where

x̂
(i)
tnk�tmk = x̂

(i)
tnk + ν

(i)
tnk

x̂
(i)
tnk − x̂

(i)
tnk�tmk

ν
(i)
tnk�tmk − ν

(i)
tnk

, (34)

ν
(i)
tnk�tmk =

ν
(i)
tnkν

(i)
tnk�tmk

ν
(i)
tnk�tmk − ν

(i)
tnk

. (35)

We will refer to the proposed message passing as “BP-GMF”, which is be
summarized in Algorithm 1.

3.2 Complexity Comparisons

Table 2 shows the proposed scheme and other message-passing schemes.
The computationally complexity of these scheme is compared in terms of
floating-point operations (FLOPs) per iteration. For simplicity, the complex-
ity of addition, subtraction, multiplication, and division is considered as
being identical. Furthermore, we don’t take the operations of exp (·) and{

λ
(i)
e (cq

tnk)
}

into accounted. Table 3 shows that the complexity of BP-MF-
GMP, BP-GMF and BP-MF is O (T (M + Q |A|)NK), and that of BP-GA is

Table 2. Receiver schemes and their component algorithms.

Receiver scheme Channel estimation Detection & decoding

BP-GA GMP BP-GA [32]

BP-GMF GMP BP-GMF

BP-MF Algorithm in [22] using disjoint channel model BP-MF [19,22]

BP-MF-M Algorithm in [26] using markov channel model BP-MF [19,22]

BP-MF-GAMP GAMP BP-MF [27]
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Algorithm 1. The BP-GMF algorithm at the ith turbo iteration.
1: Initialization: ŵ

(0)
mnk�tmk

= 0, ν
(0)
mnk�tmk

=, ∀k, ∀l.

2: for t, n, k, m do

3: z
(i)
tnk�tmk

=
∑

n′ �=n ŵ
(i−1)
tmk�mn′ x̂

(i−1)
tn′k�tmk

;

4: τ
(i)
tnk�tmk

= σ2
�+

∑
n′ �=n

[∣
∣
∣ŵ

(i−1)
tmk�mn′

∣
∣
∣
2

ν
(i−1)
tn′k�tmk

+

(∣
∣
∣x̂

(i−1)
tn′k�tmk

∣
∣
∣
2
+ ν

(i−1)
tn′k�tmk

)

ν
(i−1)
tmk�mn′

]

5: ν
(i)
tnk�tmk

=
τ
(i)
tnk�tmk∣

∣
∣
∣ŵ

(i−1)
mnk

∣
∣
∣
∣

2
+ν

(i−1)
mnk

ν
(i)
tmk�mnk

=
τ
(i)
tnk�tmk∣

∣
∣
∣x̂

(i−1)
tnk

∣
∣
∣
∣

2
+ν

(i−1)
tnk

;

6: x̂
(i)
tnk�tmk

= ν
(i)
tnk�tmk

(
ŵ

(i−1)
mn

)∗
z
(i)
tnk�tmk

/
τ
(i)
tnk�tmk

;

7: ŵ
(i)
tmk�mnk

= ν
(i)
tnk�tmk

(
x̂
(i−1)
tnk

)∗
z
(i)
tnk�tmk

/
τ
(i)
tnk�tmk

;

8: end for

9: for t, n, k do

10: γ
(i)
tnk

=
(∑

m 1
/
ν
(i)
tnk�tmk

)−1
;

11: ζ
(i)
tnk

= γ
(i)
tnk

∑
m

(
x̂
(i)
tnk�tmk

/
ν
(i)
tnk�tmk

)
;

12: p̃
(i)
eq (xi) = μ

(i−1)
tnk�tnk

(xtnk) NC

(
xtnk; ζ

(i)
tnk

, γ
(i)
tnk

)
;

13: λ
(i)
e

(
c

q
tnk

)
= ln

∑

xtnk∈A1
q

p̃
(i)
eq (xi)

∑

xtnk∈A0
q

p̃
(i)
eq (xi)

− λ
(i−1)
a

(
c

q
tnk

)
.

14: end for

15: for n do

16: Decode and generate LLRs
{

λ
(i)
a

(
c

q
tnk

)
, ∀t, ∀k, ∀q

}
;

17: end for

18: for t, n, k do

19:
20: μ

(i)
tnk�tnk

(xtnk) =
∏

q

exp
(

c
q
tnk

λ
(i)
a

(
c

q
tnk

))/ (
1 + exp

(
λ
(i)
a

(
c

q
tnk

)))
;

21: β
(i)
tnk

(xtnk) =
μ
(i)
tnk�tnk

(xtnk) NC

(
xtnk; ζ

(i)
tnk

, γ
(i)
tnk

)

∑
xtnk∈A μ

(i)
tnk�tnk

(xtnk) NC

(
xtnk; ζ

(i)
tnk

, γ
(i)
tnk

) ;

22: x̂
(i)
tnk

=
∑

αs∈A αsβ
(i)
tnk

(xtnk = αs);

23: ν
(i)
tnk

=
∑

αs∈A |αs|2 β
(i)
tnk

(xtnk = αs) − ∣
∣x̂

(i)
tnk

∣
∣2.

24: ν
(i)
tnk�tmk

= ν
(i)
tnk

ν
(i)
tnk�tmk

/
(ν

(i)
tnk�tmk

− ν
(i)
tnk

), ∀m;

25: x̂
(i)
tnk�tmk

= x̂
(i)
tnk

+ ν
(i)
tnk

(x̂
(i)
tnk

− x̂
(i)
tnk�tmk

)
/
(ν

(i)
tnk�tmk

− ν
(i)
tnk

), ∀m.

26: end for

Table 3. Complexity of detection and decoding.

Receiver scheme FLOPs per iteration

BP-GA (28 |A|+ 33)TMNK + (2 |A|+ 3Q |A|+Q)TNK

BP-GMF 63TMNK + (23 |A|+ 3Q |A|+Q)TNK

BP-MF [22] 22TMNK + (11N + 4)M (K −Kp) + (23 |A|+ 3Q |A|+Q)TNK

BP-MF-M [26] 33TMNK + (11N + 4)M (K −Kp) + (23 |A|+ 3Q |A|+Q)TNK

BP-MF-GMP 33TMNK + (11N + 4)M (K −Kp) + (23 |A|+ 3Q |A|+Q)TNK

O (T (M |A| + Q |A|)NK). Table 4 shows the complexity of algorithms perform-
ing the task of channel estimation, where GMP is O (MNK (log2K + T )), BP-
MF is O (

MNK3
)
, and BP-MF-M is O (

MNKG3
)
.
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Table 4. Complexity of channel estimation.

Receiver scheme FLOPs per iteration

BP-GA MN (20Klog2K + 30TK + 11K − 26TKp + 13Kp + 14L− 2)

BP-GMF

BP-MF-GAMP [27]

BP-MF [22] MN
(
16K3 + 12K2 + 17TK −K

)
+ 2TNK − 2NK − 2MN

BP-MF-M [26] MN
(
118G2 + 68G− 4

)
K − 112G3 − 92G3 + 5G

4 Simulation Results

The proposed receiver algorithm BP-GMF is compared with the BP-GA [32],
BP-MF variants, the MMSE, and the MFB-PCSI in terms of bit error rate
(BER) and mean square error (MSE) of the channel estimation. A MIMO sys-
tem with N = 8 single-antenna users is considered, each of which employs an
OFDM with K = 64 subcarriers. We choose a R = 1/2 recursive systematic
convolutional (RSC) code with generator polynomial [G1, G2] = [117, 155]oct,
followed by a random interleaver. For bit-to-symbol mapping, multilevel Gray-
mapping is used. Each user employs Kp = 8 pilot subcarriers modulated with
uniformly selected known BPSK symbols and uniformly placed in one selected
OFDM symbol. The channel model in simulations is an 8-tap Rayleigh fading
MIMO channel with equal tap power. At the receiver, the BCJR algorithm is
used to decode the convolutional code. It is assumed that the transmit anten-
nas from different users are spatially uncorrelated and that the receive antenna
spacing is sufficient so that they are also spatially uncorrelated. The channels
are block-static for the selected 8 transmitted OFDM symbols. For all simula-
tion results, a minimum of 100 frame errors were counted. The energy per bit
to noise power spectral density ratio Eb/N0 is defined as [33]

Eb

N0
=

Es

N0
+ 10log10

M

RNQ
, (36)

where Es/N is the average energy per transmitted symbol.

4.1 Channel-Tap NMSE Versus Eb/N0

At the initial turbo iteration, only the pilots can be used for channel estimation.
The BP-GMF, the BP-GA and the BP-MF-GAMP perform 5 inner iterations in
the channel-estimation-loops during the initial turbo iteration and perform only
1 inner iteration during each subsequent turbo iterations. The channel estima-
tor in the BP-MF is equivalent to the pilot-based LMMSE estimator at the ini-
tial turbo iteration and becomes the data-aided LMMSE estimator at subsequent
turbo iterations. The channel estimation in the BP-MF-M is performed by the
Kalman smoother proposed in [26], where the group-size of contiguous channel
weights is set to G = 4. A maximum of 50 turbo iterations are used in all message-
passing receivers, and the NMSE at the ith turbo iteration is calculated by
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Fig. 3. NMSE of time-domain channel taps versus Eb/N0.

Fig. 4. NMSE of time-domain channel taps versus number of turbo iterations, under
Eb/N0 = 7.25 dB (dashed lines) and Eb/N0 = 8.75 dB (solid lines).

NMSE =
1
Θ

Θ∑
θ=1

1
MN

M∑
m=1

N∑
n=1

∑L
l=1

∣∣∣hmnl − ĥ
(i)
mnl

∣∣∣
2

∑L
l=1 |hmnl|2

, (37)

where Θ is the number of Monte Carlo runs.
Figure 3 shows the normalized mean-squared error of the channel estimation

versus Eb/N0 in the 16× 8 MIMO system and the 64× 8 MIMO system, respec-
tively. It is shown that the NMSE of the proposed BP-GMF outperforms the
MMSE, the BP-MF-M, the BP-MF-GAMP and the BP-MF (which is evaluated
only in the 16 × 8 MIMO system due to complexity issue) in both cases.

Figure 4 presents the NMSE performance versus the number of turbo itera-
tions. Results indicate that the BP-GMF and BP-GA demonstrate almost the
same convergency, and need less than 15 iterations to converge.
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4.2 BER Versus Eb/N0

Figure 5 shows the BER performance versus Eb/N0 in the 16 × 8 MIMO sys-
tem and the 64 × 8 system, respectively. The BP-GA algorithm and BP-GMF
algorithm achieve the same performance that is about 0.8 dB away from the
MFB-PCSI at BER = 10−5; the BP-MF algorithm slightly outperforms the
BP-MF-GMP algorithm, but its performance is about 1.3 dB away from the
MFB-PCSI at BER = 10−5.

Figure 6 presents the BER performance versus the number of turbo iterations.
Results indicate that the BP-GMF and BP-GA demonstrate almost the same
convergency, and need less than 15 iterations to converge.

Fig. 5. BER versus Eb/N0 in MIMO systems with 16QAM.

Fig. 6. BER versus number of turbo iterations, under Eb/N0 = 7.25 dB (dashed lines)
and Eb/N0 = 8.75 dB (solid lines).
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5 Conclusion

In this paper, a message-passing scheme combining LBP with Gaussian approx-
imation and mean-field approximation is proposed for massive MIMO-OFDM
systems. Simulation results show that the proposed scheme can achieve the per-
formance of the BP-GA, within 0.8 dB of the known-channel bound in a 16 × 8
MIMO system and a 64× 8 MIMO system, and outperforms the BP-MF and its
low-complexity variants considerably.
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24. Drémeau, A., Herzet, C., Daudet, L.: Boltzmann machine and mean-field approx-
imation for structured sparse decompositions. IEEE Trans. Sig. Process. 60(7),
3425–3438 (2012)

25. Krzakala, F., Manoel, A., Tramel, E.W., Zdeborová, L.: Variational free energies
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