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Abstract. Network slicing is an emerging paradigm for 5G networks.
Network slices are considered as different and independent virtualized
end-to-end networks on a common physical infrastructure. Wireless
resource virtualization is the key enabler to achieve high resource effi-
ciency and meanwhile to isolate network slices from one another. In this
paper, we propose a slice-specific utility-based resource allocation scheme
in cloud radio access networks, where two sets of slices with different
requirements are supported simultaneously. Every slice can determine
its preference factor in utility function considering the trade-off between
bandwidth gain and energy consumption. The objective is to maximize
the sum utility of all slices taking the trade-off of all slices into account,
which can be formulated as a mixed binary integer nonlinear program-
ming problem. The Lagrange dual method is applied to solve the joint
optimization problem. Finally, The performance of the proposed scheme
is evaluated and the results show that the proposed scheme can meet
different customized requirements of all slices, and enhance system per-
formance when compared with other methods.
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1 Introduction

With rapid increase of traffic volumes and demand for a variety of services, the
traditional one-size-fits-all network architecture is hard to adapt to the require-
ments of emerging use cases and changing subscriber demands. Network slicing
is an emerging paradigm for 5G networks, which will enable operators to provide
networks on an as-a-service basis and meet the wide range of use cases that the
2020 timeframe will demand. Each service provider (SP) can require its own
logical network slice to support specific subscriber types and varying application
usages on a shared physical infrastructure. In order to handle multiple slices in
a robust way, radio access networks (RANs) shall provide radio resource man-
agement to efficiently multiplex traffics from multiple users in different network
slice instances onto the available shared radio resources.
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Wireless network virtualization is an effective means by which an infrastruc-
ture provider can partition the wireless and physical resources among SPs so that
they can serve their subscribers, which facilitates new business models. Due to
resource and infrastructure sharing, wireless network virtualization can reduce
capital expenditure and operational expenditure, which leads to potential energy
and capital savings [1]. Moreover, wireless network virtualization contributes to
better resource utilization due to less unused resource.

The problem of wireless virtualization in LTE is addressed in many papers.
The authors in [2] proposed a slicing scheme to allocate physical resources of
LTE system to different SPs, in which fairness requirements of different SPs
were considered. In [3], a centralized heuristic to allocate radio resource blocks
in multi-cell LTE networks was proposed, which aimed to maximize the sum rate
of the network. In [4,5], a resource allocation scheme was proposed by introduc-
ing two types of slices, including rate-based slices and resource-based slices. In
[6], the authors introduced an idea of wireless virtualization into full-duplex
relaying networks and proposed a virtual resource management architecture for
virtualized networks. However, the wireless virtualization in cloud RAN (CRAN)
has not been discussed adequately.

In this paper, we consider the joint subcarrier and power allocation problem
in a CRAN downlink system, where two sets of slices with different requirements
are supported simultaneously. Our main contribution is to introduce a slice-
specific utility-based resource allocation scheme. The scheme aims at maximizing
the sum utility of all slices under the service level agreement (SLA) and QoS
requirement constrains, in which the specific preference requirements of different
slices are considered. Every slice can determine a customized weighing factor
in its utility function considering the trade-off between spectral efficiency and
energy efficiency. The proposed allocation algorithm will take the preference
requirements of all slices into account when assigning the subcarriers and power
between different slices.

The rest of this paper is organized as follows. First, we present a description
of the system model and the problem formulation in Sect. 2. The approach to
solve the optimal problem is presented in Sect. 3. The simulation results and
their discussions are given in Sect. 4. Finally, we conclude this paper in Sect. 5.

2 System Model and Problem Formulation

We consider the downlink of the CRAN architecture, where the coverage of a
certain geographical area is provided by a cluster of RRHs, as illustrated in
Fig. 1.

2.1 OFDMA-Based Wireless Transmission

We assume that OFDMA is used for downlink transmission. The total channel
bandwidth is B Hz and is divided into N orthogonal subcarriers, thus the band-
width of each subcarrier is B/N . The system consists of G slices, where each
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Fig. 1. System model.

slice g provides its service to Kg users, and each user is cooperatively served by
its serving cluster of R RRHs.

Each RRH has a total transmit power of Pj,max and let pi,j,n denote the
power allocated to user i on subcarrier n at RRH j. The bandwidth of each
subcarrier is assumed to be small compared with the coherent bandwidth of
the wireless channel. Therefore, hi,j,n is the channel gain of the wireless link
between RRH j and user i on subcarrier n which can be considered flat. Then
the baseband complex symbol yi,n received by user i at subcarrier n can be
expressed as

yi,n =
R∑

j=1

hi,j,nwi,j,n
√

pi,j,nsi,n + zi,n, (1)

where si,n ∼ CN (0, 1) is the signal transmitted to UE i at subcarrier n, and

wi,j,n = h∗
i,j,n

|hi,j,n| denotes the complex precoding symbol, by which the phases of
transmission signals from different RRHs could be rotated into the same direction
as the phase of the initial transmission signal. Also zi,n ∼ CN (0, σ2) denotes the
received additive white Gaussian noise (AWGN), where σ2 is the noise variance.
Let Ri,n denote the transmission rate of user i on subcarrier n, which can be
calculated as

Ri,n = log2

(
1 +

|∑R
j=1 hi,j,nwi,j,n

√
pi,j,n|2

σ2

)

= log2

(
1 +

|∑R
j=1(|hi,j,n|√pi,j,n)|2

σ2

)
.

(2)

2.2 Problem Formulation

The system provides services for two specific sets of slices: (1) One set with
specific QoS requirements, the slice g in this set requires a minimum reserved



Resource Allocation in Virtualized CRAN 291

rate Rg,min, g = 1, 2, . . . G1; (2) The other set without QoS requirements, the
traffic of slice g can be delivered in a best-effort manner, g = G1 + 1, . . . G.
Meanwhile, each slice must be assigned with a minimum amount of resources to
guarantee the SLA, which can ensure isolation between slices to a certain extent.
For example, when a slice is overloaded, the other slices could still obtain its
certain amount of resources.

In this paper, a slice-specific utility-based resource allocation is proposed.
Utility function varies across slices with different requirements considering the
trade-off between the gain on throughput and the cost on power consumption,
where εg denotes the preference coefficient. The preference coefficient reflects
the specific need of the individual slice toward the above two types of aspects
in the process of resource allocation. For example, with a higher εg, the slice
needs to pay a higher cost for the allocated power, which means that the slice
prefers to minimize the power consumption. Otherwise, the slice may be less
concerned on power consumption but more concerned on the throughput gain.
The scheduling policy would consider the preferences of all slices to allocate the
resources between different slices properly. Let xi,n ∈ {0, 1} denote the subcarrier
allocation binary variable, where xi,n = 1 indicates that subcarrier n is assigned
to user i, and otherwise xi,n = 0. Thus the utility function of slice g is defined
as follows

Ug =
Kg∑

i=1

N∑

n=1

xi,nRi,n − εg

R∑

j=1

Kg∑

i=1

N∑

n=1

xi,npi,j,n. (3)

Therefore the problem we considered is to optimize the allocation of subcar-
riers and power jointly so as to maximize the total utility of all slices subject to
the physical limitations and SLA of slices, which can be formulated as

max
x,p

G∑

g=1

Ug

s.t.

C1 :
G∑

g=1

Kg∑

i=1

xi,n≤1,∀n,

C2 :
G∑

g=1

Kg∑

i=1

N∑

n=1

xi,npi,j,n≤Pj,max,∀j,

C3 :
Kg∑

i=1

N∑

n=1

xi,nRi,n ≥ Rg,min,∀g = 1, 2 . . . G1,

C4 :
Kg∑

i=1

N∑

n=1

xi,n ≥ Nρg,min,∀g = 1, 2 . . . G,

(4)

where C1 represents the exclusive orthogonal constraint which ensures that each
subcarrier is allowed to be assigned to one user at most, and C2 is the individual
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power constraint of each RRH, and C3 represents the minimum required rate
of each slice g in the set with QoS requirements, and C4 ensures the isolation
between slices such that each slice can access at least a certain number of sub-
carriers to guarantee its SLA, where ρg,min denotes the contracted minimum
portion of resources assigned to slice g, ρg,min ∈ [0, 1],∀g and

∑G
g=1 ρg,min≤1.

3 Problem Solution and Allocation Algorithm

3.1 Problem Solution

The objective function in (4) with its constraints can be classified as a mixed
binary integer nonlinear programming problem, with the decision variables xi,n

and pi,j,n being binary variable and continuous variable, respectively. The com-
plexity of solving this problem is high, so we will propose an approach to make
the problem tractable using the dual decomposition method, similar to the tech-
niques used in [7–9]. Consequently, the Lagrange function of the above optimiza-
tion problem is given by

L(x,p,λ,μ,ν,u) =
G∑

g=1

⎡

⎣
Kg∑

i=1

N∑

n=1

xi,nRi,n−εg

R∑

j=1

Kg∑

i=1

N∑

n=1

xi,npi,j,n

⎤

⎦

+
N∑

n=1

λn(1 −
G∑

g=1

Kg∑

i=1

xi,n)

+
R∑

j=1

μj(Pj,max −
G∑

g=1

Kg∑

i=1

N∑

n=1

xi,npi,j,n)

+
G∑

g=1

νg(
Kg∑

i=1

N∑

n=1

xi,nRi,n − Rg,min)

+
G∑

g=1

ug(
Kg∑

i=1

N∑

n=1

xi,n − Nρg,min),

(5)

where λ = (λ1, . . . , λN ), μ = (μ1, . . . , μR), ν = (ν1, . . . , νG), u = (u1, . . . , uG)
are the non-negative Lagrange multipliers for the constraints C1 - C4, respec-
tively, and νg = νg when 1 ≤ g ≤ G1, or νg = 0 when G1 < g ≤ G. Herein, we
can give the dual objective function as

g(λ,μ,ν,u) = max
x,p

L(x,p,λ,μ,ν,u). (6)

The dual optimization problem is then formulated as

min
λ,μ,ν ,u

g(λ,μ,ν,u)

s.t. λ � 0,μ � 0,ν � 0,u � 0.
(7)
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To solve the dual problem, we can re-express the dual objective function as

g(λ,μ,ν,u) =
N∑

n=1

gn(λ,μ,ν,u)+
N∑

n=1

λn+
R∑

j=1

μgPj,max

−
G∑

g=1

νgRg,min−
G∑

g=1

ugNρg,min,

(8)

where

gn(λ,μ,ν,u) = max
x,p

⎡

⎣
G∑

g=1

Kg∑

i=1

xi,ngi,n(λ,μ,ν,u)

⎤

⎦ , (9)

gi,n(λ,μ,ν,u) = Ri,n−εg

R∑

j=1

pi,j,n−λn−
R∑

j=1

μjpi,j,n+νgRi,n+ug. (10)

We have decomposed the dual function into the above N independent opti-
mization sub-problems given by (9). By evaluating the Hessian matrix of Ri,n

at pi,j,n in (2), we can prove that the function in (2) is concave. Thus, the func-
tion in (10) is concave as any positive linear combination of concave functions is
concave. Suppose subcarrier n is assigned to user i, the optimal p∗

i,j,n that max-
imizes the object function in (10) for fixed Lagrange multipliers can be easily
obtained. Then by comparing all possible user assignments of this subcarrier, we
select user i for which gi,n(λ,μ,ν,u) is maximized, and allocate subcarrier n to
that user. The allocation of all N subcarriers can be obtained in the same way.

Once the optimal x∗, p∗ are obtained, we can use them to solve the dual prob-
lem in (7) to find the optimal values of dual variables. Note that the Lagrange
function L(x,p,λ,μ,ν,u) is linear in λ, μ, ν, u for fixed x∗ and p∗, and
g(λ,μ,ν,u) is the maximum of these linear functions, so the dual problem in
(7) is convex. With the help of the sub-gradient method, we can find the optimal
values of dual variables, which can be given by

μt+1
j =

⎡

⎣μt
j − δj(Pj,max −

G∑

g=1

Kg∑

i=1

N∑

n=1

x∗
i,np∗

i,j,n)

⎤

⎦
+

, (11)

νt+1
g =

⎡

⎣νt
g − ξg(

Kg∑

i=1

N∑

n=1

x∗
i,nR∗

i,n − Rg,min)

⎤

⎦
+

, (12)

ut+1
g =

⎡

⎣ut
g − ζg(

Kg∑

i=1

N∑

n=1

x∗
i,n − Nρg,min)

⎤

⎦
+

, (13)

where δj , ξg and ζg are the appropriate small step sizes to guarantee the con-
vergence of the sub-gradient method. The iteration process will be stopped until
certain criterion is fulfilled.



294 L. Chen et al.

3.2 An Iterative Algorithm

The optimization problem is typically required to be decomposed into N sub-
problems to reduce its complexity. After obtaining the optimal dual variables
that minimize the dual function, it remains to find the optimal primal solutions
x∗, p∗ that maximize the Lagrangian function and satisfy all constraints in the
original problem (4). The final optimal solution would be achieved in such an
iterative manner. Our proposed algorithm is proposed as follows:

1. Initialize the optimal variables x0, p0 and the dual variables λ0, μ0, ν0, u0.
2. For each iteration t, solve the N sub-problems in the following steps:

(a) For the given dual variables, compute the optimal p∗
i,j,n that maximizes

the object function in (10).
(b) Update the optimal g∗

i,n for every user i.
(c) Select k = arg max g∗

i,n(λ,μ,ν,u), and set xk,n = 1, otherwise xi,n = 0,
for i 	= k.

(d) Once the assignment problems are solved for all N subcarriers, the opti-
mal variables x∗, p∗ can be obtained.

3. Update the λt+1, μt+1, νt+1, ut+1 using the obtained x∗ and p∗ and let
t = t + 1.

4. Continue to the next iteration in step (2) until convergence or the maximum
iteration number tmax is reached.

3.3 Complexity of the Algorithm

The optimal solution to (10) can be obtained by using global searching, assuming
that each pi,j,n takes discrete values and requires O(X) computational complex-
ity. Thus, the optimal power allocation solution requires O(XR) computational
complexity. For the given dual variables, the complexity of updating x in each
iteration is O(NGKgX

R). Let L be the number of iterations needed to converge
in the sub-gradient method. Therefore the total computation complexity of the
proposed algorithm is O(LNGKgX

R).

4 Numerical Results

4.1 System Setup

In this section, the performance evaluation for the proposed allocation algorithm
is presented. There are 3 RRHs considered to cover a certain geographical area.
Without loss of generality, the channels of different subcarriers are assumed to
be independent of one another, which are taken from i.i.d. complex Gaussian
random variables with zero mean and unit variance, and the noise variance is
given as σ2 = 0.1. The number of subcarriers is taken as 32. We assume that
the system consists of two slices, each of which serves 10 subscribers. One slice
(Slice 1) has QoS requirement that needs a minimum rate of 120 bit/Hz, and the
other one (Slice 2) has no QoS requirement. Meanwhile, the contracted minimum
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resources of each slice is given as ρg,min = 0.25. For comparison, we use two base-
line schemes. The first scheme is equal power allocation (EPA) algorithm where
the total power is shared equally among subcarriers, and the second scheme
is static sharing (SS) scheme, which statically assigns fixed subcarriers to each
slice.

4.2 Results and Discussion

In Fig. 2, we present the total achievable system throughput of the proposed
scheme, EPA scheme and SS scheme, respectively. In this case, the preference
coefficient εg is set to zero for each slice, which means that both slices would like
to maximize the bandwidth gain no matter how much power is consumed. We
can see that, the maximum achievable throughput of all three schemes increases
monotonically with Pmax, and our proposed scheme outperforms all the other
schemes. SS scheme offers the lowest throughput since users of each slice can
only access their dedicated subcarriers, and have no chance to use underutilized
resources that belong to other slice. Figure 3 depicts the impact of different QoS
constraints of Slice 1 on sum utility of the system. In this case, the preference
factors are set as ε1 = 0.6 for Slice 1, and ε2 = 0.2 for Slice 2. The results show
that the sum utility decreases as the rate constraint of Slice 1 increases. This is
because, by increasing Rmin, more transmit power should be consumed to satisfy
the QoS constraints. And the allocated subcarriers for users with best channel
conditions in Slice 2 decreases when the Qos requirement of Slice 1 increases
which leads to inefficient use of the resources hence lowering the sum utility.
Thus the system can hold the strict rate constraint at the cost of sum utility.
In addition, at the same Rmin, the utility of the proposed scheme is larger than
that of EPA scheme since our proposed scheme is a joint subcarrier and power
allocation algorithm but EPA scheme is not.

10 20 30 40 50 60 70 80 90 100
180

200

220

240

260

280

300

Pmax(watts)

Th
ro

ug
hp

ut
(b

ps
/H

z)

Proposed
SS
EPA

Fig. 2. Throughput of the system versus maximum transmit power Pmax.
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Fig. 4. Total utility versus Pmax with different factor of Slice 1.

Figure 4 illustrates the impact of the maximum transmit power of each RRH
on sum utility of the system. The preference coefficient of Slice 2 is given by ε2 =
0.2, while Slice 1 has three coefficient sets, ε1 = 0.2, ε1 = 0.6 and ε1 = 1.2 for
comparison. It can be noticed that the proposed scheme has better performance
than the EPA scheme in all three cases, and the system utility of a higher ε1
is worse than that of a lower ε1, since a higher ε1 means that Slice 1 must pay
much more for the power allocated in order to achieve the same throughput
constraint. Further, we can see that, When the transmit power is relatively
low, the maximum achievable utility increases monotonically with the increasing
power in all schemes. The optimal utility can be achieved with a high power
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constraint Pmax. In this case, the achievable utility of the proposed scheme
no longer increases with the constraint Pmax as no more power is consumed.
However, the EPA scheme continues to allocate more power in the high Pmax

region, resulting in the system utility dropping dramatically, especially when
the preference coefficient is higher. This is because, the system utility has a
diminishing return with respect to the increase of the transmit power, higher
power consumption counteracts the throughput gain.

To study the impact of different preference coefficients to the slice perfor-
mance, we take “bit/Hz/Joule” as the metric for EE [10], and EE is defined
as Rg

Pg
where Rg denotes the achieved throughput of the slice g, Pg denotes its

consumed power. In this case, the preference factor of Slice 2 is fixed as ε2 = 0.2,
while the factor of Slice 1 has three options: ε1 = 0.2, ε1 = 0.6 or ε1 = 1.2. From
Fig. 5, we can observe that the higher ε1 leads to higher slice-EE of Slice 1.
This is because the higher ε1 means that Slice 1 prefers to achieve the similar
throughput in a more energy-efficient way, which can also easily explain why the
EE of Slice 1 is much higher than that of Slice 2. In addition, it can be observed
in Fig. 6 that the EE of Slice 2 is lower when the preference factor of Slice 1
is higher. Because Slice 1 is more concerned on power consumption than Slice
2 in such case, and the scheduling policy will consider the preference of both
slices when allocating resources between slices in order to maximize the utility
of whole system. Therefore the resource allocation is energy-efficient to Slice 1,
while it may be opposite from the perspective of Slice 2. However, the two slices
can only achieve very similar slice-EE in EPA scheme regardless of the prefer-
ence coefficients they chose in their utility function, since the power allocation is
unchanged in this scheme. Finally, Our proposed scheme can satisfy the different
requirements of slices according to their trade-off between throughput gain and
power consumption, which can achieve better system performance.
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Fig. 5. EE of Slice 1 versus Pmax for different factor of Slice 1.
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5 Conclusions

In this paper, we studied slice-specific utility-based resource allocation in
CRANs. In the proposed resource allocation algorithm, each slice has a cus-
tomized utility function taking their specific trade-off between spectral efficiency
and energy efficiency into account. The objective function is to maximize the sum
utility of all slices through joint subcarriers and power allocation under different
QoS requirement constraints of slices. Numerical results demonstrated that the
proposed algorithm significantly outperforms other candidates, which can satisfy
the customized preference of slices in terms of throughput gain and power cost.
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