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Abstract. Massive MIMO technology is one of the most promising con-
cepts in 5G wireless system. In the uplink of a massive MIMO system,
complexity and performance of signal detection are two key issues been
concerned simultaneously. Many message passing algorithms based on
factor graph have claimed to achieve nearly optimal performance at low
complexity. A unified factor graph model is introduced to describe two
typical message passing algorithm,approximate message passing (AMP)
and message passing detection (MPD). By analyzing different message
calculation methods in the two algorithms, their computational complex-
ity and performance are given in detail. Simulation results have shown
that MPD exceeds AMP in both complexity and performance.
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1 Introduction

Massive MIMO with tens of hundreds of antennas at the BS can significantly
improve the system capacity and spectrum efficiency, which is considered as a
candidate technology for 5G standards [1]. However, as the number of antennas
grows, the computational complexity of detectors has become the bottleneck
of its hardware implementation. Some detectors that work well in traditional
MIMO fail in massive MIMO. For example, the complexity of optimal maxi-
mum likelihood (ML) detector scales exponentially in the number of transmit
antennas, and conventional linear detectors like zero-forcing (ZF) and minimum-
mean-square-error (MMSE) involve complicated matrix inversion, are difficult to
simultaneously satisfy high-performance and low-complexity requirement of mas-
sive MIMO. Thus, finding a low-complexity detection algorithm on the uplink
in massive MIMO, while maintaining good performance, is necessary.

Researches have shown that iterative detection algorithms based on factor
graph can achieve performance that close to ML, meanwhile the computation
complexity scales linearly, rather than exponentially in the number of transmit
antennas [2—4]. There are two main directions to solve this problem. One is
message passing algorithm working in complex-value domain [2,3]. The other
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is message passing exploiting channel-hardening working in real-value domain
[4]. These algorithms all claim that nearly ML performance has been achieved,
but computation complexity comparison between these algorithms has not been
done so far.

Therefore, in this paper, we select two typical algorithms, approximate mes-
sage passing (AMP) and message passing detection (MPD) representing those
two directions previously mentioned. First we described these two algorithms by
using unified system model and message passing graphical model, then compared
their computation complexity and performance in detail.

The rest of the paper is organized as follows. We first introduce the system
model in Sect.2. Two message passing detection algorithms based on factor
graph are described in Sect.3. Complexity analysis and simulation results are
presented in Sects. 4 and 5, respectively. Section 6 concludes this paper.
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Fig. 1. Multi-user massive MIMO system on the uplink

2 System Model

Consider a multi-user massive MIMO system with N independent users, where
each user is equipped with one transmit antenna, and the receiver is equipped
with an array of M antennas, M is in the range of tens to hundreds [5]. System
load factor ¢ is defined as N/M. The system model is illustrated in Fig. 1. For
each user, every () information bits are mapped to one modulation symbol. Let
Xe = [25, 5, ...25]" be the transmitted vector from all the users, where z¢ € B
is the symbol transmitted from the nth user and B is the modulation alphabet.
Let H, € CM*N denote the channel gain matrix and h{; denote the complex
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channel gain from the jth user to the ith BS antenna. The elements of H., which
follow CN(0,1), are assumed to be independent identically distributed (i.i.d.).
It is assumed that the NV transmitters and the receiver are perfect synchronized
and all channel gains are known at the receiver. Then the received vector can be
presented as

ye = Hexe +ng, (1)

where n,. is the additive white Gaussian noise (AWGN) vector whose entries
follow CN(0,02). The average received SNR per receive antenna is given by
v = NE,/o2, where Ej is the average per transmitted symbol.

The MPD algorithm to be introduced works in real-value domain, so (1) can
be written as

y = Hx +n, (2)

where

s [ ] [859] = 5] = 3]

R(-),3(:) denotes the real and imaginary part, respectively.
For a QAM modulation alphabet B, the elements of x will take value from
the underlying pulse-amplitude modulation (PAM) alphabet A.

3 Two Message Passing Algorithms

In this section, we introduce two message passing algorithms based on factor
graphs dedicated to the detection of massive MIMO. 16-QAM gray-mapping
modulation is considered.

3.1 Factor Graph Model of Message Passing Algorithm

Detection algorithms based on FG (Factor Graph) is briefly introduced in this
section [2]. Consider the MIMO system model in (1) or (2), each entry of
the received vector (or observation vector) is seen as a function node f;,j =
1,2, n_f(number of function nodes) in a factor graph, and each transmitted
symbol as a variable node x;,i = 1,2, n_z(number of variable nodes). Figure 2
illustrates this graph model. The job of MIMO detection is using the knowledge
of received vector and channel matrix to obtain an estimate of transmitted vec-
tor. Message passing algorithms are carried out on the factor graph by passing
messages between the variable and function nodes.

3.2 MPD Algorithm

As proposed in [4], the MPD algorithm exploits channel hardening that occurs
in massive MIMO channel.
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Fig. 2. Message passing between function and variable nodes on FG

Channel Hardening. As the dimension of the channel gain matrix H increases,
the off-diagonal terms of the H” H matrix become increasingly weaker compared
to the diagonal terms. This phenomenon is called channel hardening in [6].

In Sect. 3.2, we will work with approximations to the off-diagonal terms of
the HTH matrix, which achieves very good performance in large dimensions at
low-complexity.

MPD Algorithm. By performing matched filter operation on (2), we have
H'y =H"Hx + H'n. (3)

From (3), we write the following:

z=Gx+v, (4)
where
ZéHTy éHTHXéHTn
M YT M M
The ith element of z can be written as
2N
zi = Gy + Z Gijxj + v; (5)
j=1,j#i
Lk,

where G;; is the (4,5)th of G, x; is the ith element of x, and

oo s ()

= M
is the ith element of v, where Hj; is the (j,i)th element of H. The variable k;
defined in (5) denotes the interference-plus-noise term, which involves the off-
diagonal elements of G(i.e., Hj;, i # j). The distribution of k; is approximated
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as CN(u;,0?) . By central limit theorem, this approximation is accurate for
large M, N. Since the elements in x , v are independent, the mean and variance
in this approximation are given by

2N
pi = E(k;) = Z GijE(z;) (7)
J=1,j#i
2N
o? = Var(k;) = Z G} Var(z;) + 0. (8)
=1,

Denoting the probability of the symbol x; as p;(s),we have

E(z;) = Y spj(s), Var(z;) = Y s”pj(s) — E(z;)”

VsinA VsinA

where 02 = 02 /2M. Due to the above Gaussian approximation, the a posteriori

probability (APP) of z; being s € A is computed as

(o) xexp 5o = Gss = ). )

2
20;

Message Passing. First of all, because of the above matched filter operation,
observation vector became a 2N x 1 vector, which means that the number of
function and variable nodes is 2IV. As shown in Fig. 3, the messages passed from
variable node z; to any function node are E(z;) and Var(z;), the computation
of which needs p;(s). Then, we use the knowledge of G, i.e. channel matrix and
the message passed to function node f; to compute the mean j; and variance
o? of interference-plus-noise term k;. Moreover, p;(s) is computed using p;, o?
and jth elements in observation vector. As we can see, the major difference in
Fig. 3 comparing to Fig. 2 is that computation of messages coming from x; only
needs the messages from function node f;, rather than all 2N function nodes.

Therefore, computation complexity of MPD is significantly reduced.

Fig. 3. Message passing between function and variable nodes for MPD
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Damping Message. In the above graphical model, the message passing algo-
rithm may fail to converge, and even if it does converge, the estimated probabil-
ities may be far from exact. In [7], a damping method intended to improve the
rate of convergence is proposed. The damped message to be passed in iteration
t is computed as a weighted average of the message in iteration ¢—1 and the
message computed at the tth iteration with a damping factor A € [0,1). In [3],
it is shown that A = 0.33 is optimal, Thus, let p! be the computed probability
at the tth iteration, the message at the end of ¢th iteration is

= (1 2)p; + Ap; " (10)

The algorithm is initialized with p;(s) = 0.25,¥s € A and terminates after a
fixed number of iterations. Finally, the bit as

Pr(b? =1) = > pils), (11)

VscA:pth bit in s is 1

where 0! is the pth bit in the ith user’s symbol. A hard estimate of bit b can
be obtained as

y_ [1if (B =1)>05
7 1 0 otherwise.

3.3 AMP Algorithm

Message passing algorithms referred as AMP (Approximate Message Passing)
based on factor graph and its variants are proposed in [2]. In typical AMP
algorithm, the message is modeled as Gaussian random variable. In addition,
the messages of all the edges shown in Fig.2 should be calculated. The focus
of AMP is mainly on the mean and variance updating in message passing. In
the following, N¢(z;a,b) = (7b) "' exp(—|z — a|?/b) denotes complex Gaussian
function, where x,a,b denotes the random variable, the mean, the variance,
respectively. The conditional probability p(y.|x.) can be factorized into:

p(yelxe) = Hp] THES) (12)

where

. 1 ly§ — >0, b
pi(y§lxe) = —5 eXp (JJ . (13)

2
n On

This factorization is represented by the factor graph in Fig.2. Let “L—» 5 (%)
denotes the message sent from the variable node x; to the function node f; in
the tth iteration, and let ,utfjﬁmi (x5) denotes the opposite message. The message-
update rules are given by

/’[/IL—>f] H Mf /—mcl (14)
J'#J
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@) = > pi(wslxe) [ s, (@5) (15)

x\z; )

As the symbols take on values in the discrete set B, the computation of
,ujcjﬁxi (x5§) in (15) requires exponential time to marginalize out the random vec-
tor x\z;. To reduce complexity, x¢ is considered as a continuous random variable
and the message p’, =5 (x5

¢) is approximated into a complex Gaussian function

fig, s, (@§) = Ne(af @, 0, ;) where the parameters 75 ;. and wj _,

) can be calculated by

are transmitted symbols mean and variance, ,ul}jﬁmi (x§

2
integration:

@) = [ i) [ Nelatiat Lyt )
x\ei i (16)

= NC(hﬁzxz’ef]ﬂx ”ijﬂml)

where the parameters 0%_,%_ and 'y}j_)xi are given by

e;j—mi = Zhjzxzz—»fj - y] Zhjlxz —>f +hj’L‘T:E7—>f 9 (17)
i £
G}j
and
’Y;jﬂam 0' + Z |h]Z | wm a—f = U + Z |hﬂ|2 _lhji‘2w;i*>fj' (18)
i’

%,

Then, by substituting uf Hm( 9 = Nc (hjzml,ﬁf o ,vf HI) into (14),

,uIinj( x§) can be normalized as

N(C( C. $1_’fJ7/BCEL_’fJ)

t c
i g () = I (19)
¢ ! ' Z% E]BN(C( :8 _’f] x'i_’fj)
where 04; i) 5 and ﬁ»L _y, are given by
-1
-1
hore|? h B |2
ity - (S ) sl )

|
t—1
]/?5] ’y‘fjlﬁxi ’yf7*>131 ,yf]*’iEz
%,_/

(az )1
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h* 015 1 h* 9t 1
t—1 -1 I g JiVfiomi s pt—1
g ety D o = Al | S me
G145 ’yf =Ty j ,yf]*mz
7';71
(21)
In (17-21), 9; 'yf , z , th:. are used to reduce complexity. After Tth iterations,
the probablhty of transmitted symbol from ith user been z{ € B is
p(af) = Ne(a§: €7, az,), (22)
where ¢£ = 71 al . A hard estimate of symbol z¢ can be obtained as
x{ = arg max p(z7). (23)

4 Complexity Analysis

The complexity is evaluated in terms of floating-point operations(FLOPs) as
in [2]. A FLOP is assumed to be either a real multiplication or a real summa-
tion here. Transposition, Hermitian transposition, conjugate, and real/imaginary
operator require no FLOP. It is also assumed that the operation of exponent can
be implemented by a look-up table. Note that the multiplication of two complex
numbers needs six FLOPs.

4.1 Complexity of MPD

In the preprocessing stage, the MPD algorithm requires 8M N, 16M N2, 4N?
FLOPs for the calculation of z, G, |G|? respectively. For computing the mes-
sages at nodes in each iteration, E(x;) needs 14N FLOPs, Var(x;) needs 18N
FLOPs, {u;,i € {1,2,..2N}} need 2N (4N—3) FLOPs, {0?, i € {1,2,..2N}}
need 2N(4N-2) FLOPs, {pi(s), i € {1,2,..2N}, s € A} need 2N x4 x6
FLOPs, the normalization of p needs 2N x 7 FLOPs. Finally, at the end of
each iteration, damping of messages need 2N x 4 x 3 FLOPs.

4.2 Complexity of AMP

In the preprocessing stage, the AMP algorithm requires 3SM N FLOPs to com-
pute |Hc|?. For computing the downward messages at the variable nodes,
{hs, g, (@), Vi, Y5} and {2, wy, ., Vi, Vj} need (11[B| — 1)MN FLOPS
and (6|B| + 1)M N FLOPs, respectively. For computing the upward messages
at the function nodes, {’y}i éMW}J 9} Ly 0} , Vi,V } need 13M N FLOPS For
computing the messages at the variable nodes, {! ; ; — 5 T t Vi, Vi)
need 16 M N-3N FLOPs.

a;—)f?a
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4.3 Complexity Comparison

Total complexity per iteration for MPD, AMP is listed in Table 1.

Table 1. Complexity Comparison of MPD and AMP

Algorithm | Preprocessing Per iteration
MPD 16MN?+8MN+4N? | 16N>+108N
AMP 3MN (17|B| + 29) M N-3N

5 Simulation Results

Simulation results all base on the same assumption. System model (1) or (2) is
used for simulation. For each simulated point, a minimum of 100 bit errors were
counted.

First, a massive MIMO system with N =16 users and M =128 receiving
antennas is considered. Figure4 presents the BER performance of MPD and
AMP with the number of iterations. It can be seen that 8 iterations are enough
for both MPD and AMP to converge at SNR=6dB and SNR =8 dB.

Number of iterations

Fig. 4. BER performance versus number of iterations for MPD and AMP in a 16 x 128
system

Furthermore, Fig. 5 presented complexity versus number of users with fixed
receiving antenna number, M =128. The number of iterations is set to be 8. It
is shown in Fig.5 that AMP needs more than ten times FLOPs than MPD at
lightly loaded system (let’s say, ¢ < 0.1). However, as the load factor grows, the
complexity of MPD increase faster than AMP. In [3], several variants of AMP
that can significantly reduce complexity are proposed.
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Fig. 5. Complexity versus number of users with M =128
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Fig. 6. BER performance of MPD and AMP for different values of N (=16, 32, 64) and
fixed M =128

Figure 6 presents the BER performance of MPD and AMP for a fixed number
of receiver antennas at the BS (M =128) and varying number of users (N =16,
32, 64). The number of iterations is big enough to converge. It can be observed
that when N =16, MPD performs as well as AMP, when N =32, MPD out-
performs AMP by about 0.2dB to achieve BER of 1072, when N =64, MPD
performs much better than AMP.
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6 Conclusions

In this paper, we introduced a unified message passing graphical model based on
factor graph to describe two detection algorithms dedicated to massive MIMO.
Then detailed computation complexity is analyzed in detail in the terms of
FLOP. Simulation results had shown that thanks to channel hardening phe-
nomenon, the computation complexity of MPD is far less than AMP. In addi-
tion, as the load factor grows, MPD outperformed AMP. Therefore, MPD is a
promising signal detection algorithm for massive MIMO.
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