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Abstract. The Modulated Wideband Converter (MWC) can provide a
sub-Nyquist sampling approach to sense sparse multiband analog signals and
reconstruct the frequency support set. However, the existing SOMP recon-
struction algorithms need a priori information of signal sparsity. This paper
applies the SwOMP algorithm to the CTF (Continuous-To-Finite) block of
MWC. The SwSOMP algorithm uses stage-wise weak selection in SOMP, and it
can reduce computational cost and solve large scale problems. It does not need
prior information of signal sparsity, and the frequency support can be recon-
structed blindly. The simulation results demonstrate that, MWC system with
SwSOMP algorithm, compared with the SOMP algorithm, can use less number
of channels, achieve higher percentage of correct support recovery blindly, and
reduce the sampling rate of the system.

Keywords: Spectrum sensing � MWC � sub-Nyquist sampling
Compressed sensing � Stage-wise weak Simultaneous OMP(SwSOMP)

1 Introduction

Spectrum sensing is often necessary in communication applications, such as Cognitive
Radio (CR) [1]. Its aim is to solve the spectrum crowdedness. CR should be able to
reliably monitor the spectrum and detect the primary users (PUs) activity. Then, sec-
ondary users (SUs) would opportunistically access frequency bands left vacant by PUs.
Therefore, support recovery of signals is pivotal to exploit the vacant bands in wide-
band spectrum. Generally, the sparse multi-band analog signal is transmitted in CR
network. Multiband RF signals occupy a fairly wideband range, while the frequency
band of each RF signal is narrow and distributed within the given bandwidth without
intersecting.

At the receiver, if the Nyquist sampling theorem is used to reconstruct the high
frequency multiband analog signal, it brings the sampling system a burden of ultra-high
sampling rate and massive sampling data [2]. Therefore, in order to achieve
sub-Nyquist sampling rate, the compressed sensing theory [3] must be extended to the
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analog domain. First came the method based on AIC (Analog-to-Information Con-
version) [4, 5]; However, the application scenarios of AIC is limited, and sampling
efficiency for the multiband signal is low. For this reason, a variety of novel
sub-Nyquist sampling structures have emerged such as CRD (Constrained Random
Demodulation) [6], random equivalent sampling [7] and MWC (Modulated Wideband
Converter) [8]. The sub-Nyquist sampling method of MWC is proposed by Yonina
Eldar and can be applied in the field of radar [9], broadband communication [10] and
cognitive radio spectrum sensing [11, 12].

The accurate reconstruction of the signal support set is the core problem of MWC
system. At present, MWCmainly uses CTF (Continuous-To-Finite) reconstruction block
[13]. SOMP (Simultaneous Orthogonal Matching Pursuit) algorithm [14] can be used
commonly as the reconstruction algorithm in CTF block. SOMP is simple and easy to
realize, but its probability of correct reconstruction is not high enough [15]. Under the
case of no noise, the required number of channels for accurate reconstruction is much
higher than the theoretical lower bound. In practical applications, the channels must be
implemented by the hardware, which will greatly increase the development cost of the
system. In addition, the sparsity of signal has to be used as a priori information for the
reconstruction. However, it is difficult to obtain in the CR environment. Therefore, it is
important to investigate better reconstruction algorithms which do not depend on the
signal sparsity, and can significantly improve the percentage of the support recovery and
can reduce the number of required sampling channels.

To address the existing problems, this paper applies the SwSOMP (Stage-wise
weak Simultaneous OMP) algorithm based on SwOMP [16] to the support recovery of
MWC. The SwSOMP algorithm uses stagewise weak selection in SOMP, it further
improves StOMP (Stage-wise OMP) [17] and optimizes the threshold settings for the
selection of atoms, which can reduce the dependency for the observation matrix. It can
reduce computational cost and solve large scale problems. It does not need prior
information of signal sparsity, and the frequency support can be reconstructed blindly.
This paper applies the SwSOMP algorithm to the CTF (Continuous-To-Finite) block of
MWC. The simulation results demonstrate that, MWC system with SwSOMP algo-
rithm can use less number of channels, achieve higher percentage of correct support
recovery blindly, and further reduce the sampling rate of the system.

The remainder of this paper is organized as follows. In Sect. 2 we introduce the
signal model and principles of MWC system. Section 3 describes the method of
support recovery of MWC with SwSOMP algorithm. Section 4 gives the simulation
results and discussion. Section 5 concludes this paper.

2 Signal Model and Principles of MWC System

2.1 Sparse Multiband Signal Model

Sparse multiband signal is often found in the CR environment [18]. Suppose that the
received signal xðtÞ is a sparse bandpass analog signal. Its spectrum is distributed in the
frequency range ½�fnyq=2; fnyq=2�, and fnyq is the Nyquist sampling rate of the signal.
Assume that the spectrum of xðtÞ only contains N sub-bands whose bandwidth are
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Bi �B ðN� i[ 0Þ (without considering the symmetric band), and the sub-bands do
not overlap. B is the maximum bandwidth of the sub-bands. The center carrier fre-
quency of each sub-band is unknown. All unions of sub-bands and the maximum
bandwidth B can be expressed as:

P2N ¼ [N
1

ai; bið Þ [ �bi;�aið Þf g B ¼ max
i

bi � aið Þ ð1Þ

The minimum needed sampling rate of the multi-band signal, the Landau rate [19],
is defined as:

MðP2NÞ ¼ 2
XN
i¼1

bi � aið Þ ð2Þ

As is shown in Fig. 1, the entire frequency band is divided into L continuous
narrow bands, and each band’s bandwidth is not larger than B. Adding the symmetric
parts, the spectrum of xðtÞ in the entire frequency band has at most 2N parts with signal
energy. The bands are designated as 1; . . .; L½ �, then the set of the indices of sub-band
Xiðf Þ is called the support set of signal xðtÞ which is defined as K ¼ suppðXðf ÞÞ. The
frequency bands corresponding to the indices are called the support bands. Since
2N � L, xðtÞ can be viewed as a sparse multiband signal.

In summary, the support bands of xðtÞ must meet the following two conditions:
(1) it has to be distributed in a very wide frequency range; (2) the signals only exist in a
few discrete frequency bands.

2.2 Sampling Scheme for MWC System

MWC contains a number of sampling channels, and each channel structure is the same,
which is composed of the mixer, low-pass filter and ADC. The structure of the system
is shown in Fig. 6(a). The received signal xðtÞ is input into m parallel channels at the
same time, each of which multiplies different patterns of periodic mixing signal piðtÞ to
realize the shifting from the frequency spectrum of xðtÞ signal to baseband. The piðtÞ of
each channel is uncorrelated, and the cycle of piðtÞ is Tp ¼ 1=fp. M is used to show the
number of random alternating times of �1 in a cycle. Mfp is defined as the alternating
frequency of the mixing signal. The waveform of piðtÞ is shown in Fig. 2. After
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Fig. 1. Spectrum structure of sparse multiband signal
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mixing, the signal passes through lowpass filter whose cut-off frequency is 1=2Ts, as is
shown in Fig. 3. It finally passes through ADC at sampling rate is fs ¼ 1=Ts and
acquires M groups of low-speed digital sampling sequence yi½n�.

On the analysis of the ith channel, the Fourier series expansion of the random
mixing function piðtÞ is:

piðtÞ ¼
X1
l¼�1

cile
j2pfplt ð3Þ

The coefficient cil ¼ dl
PL�1

k¼0
aike�j2pL lk, aik 2 f�1; þ 1g: When l ¼ 0, d0 ¼ 1=L, and

when l 6¼ 0; dl ¼ ð1� e�j2plL Þ=j2pl.
Then, after passing through the lowpass filter with frequency characteristic

Hðf Þ ¼ 1 fj j � fs=2
0 fj j[ fs=2

n
, the relationship between the DTFT (Discrete Time Fourier

Transform) of yi½n� and xðtÞ’s Fourier transform Xðf Þ is obtained by sampling is as
follows:

Yiðej2pfTsÞ ¼
XL0
l¼�L0

cilXðf � lfpÞ ð4Þ

In (4), f 2 �fs=2; fs=2½ �; and L0 is the smallest integer that makes L ¼
2L0 þ 1�F ¼ fnyq=f : The Eq. (4) shows that the spectrum of the output sequence Yi n½ �
is changed to the weighted sum of original signal spectrum Xðf Þ with a fp step shifts,
and the spectral segment with a width of fs is intercepted by a low-pass filter. If taking
Yiðej2pfTsÞ as the ith component of m dimensional column vectors, Xðf � lfpÞ as the lth
components of the 2l0 þ 1 dimensional column vectors zðf Þ; (4) can be expressed as:

yðf Þ ¼ Uzðf Þ; f 2 ½�fs=2; fs=2� ð5Þ

In (5), U is a m 	 L matrix. Uil ¼ ci;�l ¼ cil
; 1� i�m, and m\L. Apply-
ing IDTFT (Inverse Discrete Time Fourier Transform) transform on (5), we can get the
corresponding relationship between the sequence Z½n� ¼ ½z1½n�; z2½n�; . . .; zL½n��T and
the sampling data Y ½n� ¼ ½y1½n�; y2½n�; . . .; ym½n��T :

Y ½n� ¼ UZ½n� ð6Þ

...
pT
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M
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Fig. 2. Periodic mixing signal of the ith channel

f

( )H f

2
sf

2
sf− 0

Fig. 3. Ideal low-pass filter.
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For any frequency f 2 ½�fs=2; fs=2�, (6) can be viewed as a typical compressed
sensing problem, where an observed vector Y is known to recover an unknown sparse
vector Z. Therefore, it is viable to recover the support bands of the signal by using the
reconstruction algorithms of compressed sensing.

2.3 Reconstruction of Signal Support Set

Since m\L, (5) is an underdetermined equation. To get the unique solution to the
equation, the sampling parameters of the MWC system must meet the following
conditions [8]:

(1) fs � fp �B; fsfp \
Mmin þ 1

2 ;

(2) m� 2K ¼ 4N, K is the sparsity of the sparse vector zðf Þ. N is the number of
signal bands without considering the symmetric bands;

(3) The number of �1 symbols in a periodic sequence piðtÞ must satisfy

M�Mmin ¼ fnyq
fp

l m
. If fs ¼ fp, then Mmin ¼ L;

(4) Any 4N column of the matrix U is linearly independent.

It has been pointed out in [3] that the sparse solution for (5) is a NP-hard problem.
Nonetheless, such a problem can be transformed into a minimization of the l1 norm
problem provided that the number of sampling channels m� cK logðL=KÞ. c is a
constant, and K is the sparsity (i.e. the number of signal bands). It can be known that
the value of m is much greater than 2K.

The crucial problem of reconstruction is to reconstruct the sparse Z½n� from the
sampling sequences Y ½n�. Since the signal frequency is continuous in ½�fs=2; fs=2�, (5)
is infinite dimensional, i.e., contains infinite number of SMV (Single Measurement
Vector) problem. A CTF block is proposed for reconstruction in [13], as shown in the
Fig. 4. It was proposed as a transformation framework from infinite dimension to finite
dimension (Multiple Measurement Vectors, MMV) [15]. Support bands K of the signal
can be estimated by CTF, through which the signal xðtÞ can be further recovered.
SOMP algorithm can be used to the reconstruction in MWC, which achieves recon-
struction in [8]. The experimental results show that algorithm can achieve high per-
centage of correct reconstruction when m� 2K logðL=KÞ, but there is still a large gap
compared with the theoretical lower bound.

Construct a MMV matrix V

[ ] [ ]H

n
Q y n y n= ∑

HVVQ =

[ ]y n

Recover the joint support 

Solve MMV problem

V=ƒ U

Sparse solution Û
Using 

SOMP/ 
SwSOMP

V

( )ˆ ˆsupp UΛ =

Λ̂

Λ̂

Fig. 4. Schematic diagram of the CTF block.
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3 Support Recovery of MWC with SwSOMP Algorithm

As mentioned in the introduction, the SOMP reconstruction algorithm has many
shortcomings. As a result, in terms of the success rate of recovery, the needed mini-
mum number of channels, the reconstruction under low SNR and the maximum
number of bands that can be reconstructed, the reconstruction algorithm of MWC still
has a large space for improvement.

SwSOMP adopts the idea of stage-wise. First, atoms are selected according to the
principles of correlation, using threshold to select atoms matched with residual. The
difference with SOMP algorithm is that it does not always choose the most relevant
matching atom in each iteration, but finds a number of atoms in each iteration
according to atomic selection criteria. Then support set and support matrix are updated,
least square method is used to obtain an approximate solution, and the residual is
updated finally. At last, the support K is obtained after the end of the iterations. The
procedure of SwSOMP algorithm is shown in the Fig. 5.

The threshold of the atomic selection of the algorithm is defined as:

th ¼ a max
i

gij j ð7Þ

where g represents the correlation matrix obtained after inner product operation with
observation matrix U and the residual. (7) finds out the largest correlated data in the
matrix and uses its index in the matrix to find the corresponding atom in the column of
U. The chosen atom is most relevant with the residual. a is known as weakness
parameter and a 2 ð0; 1�. The reason of such a threshold selection is that the obtained
largest value of the inner product operation sometimes may not be the most relevant
one. According to (7), the updated expression of the corresponding support set in
SwSOMP is:

Kk ¼ Kk�1 [ i : gij j � thf g ð8Þ

Update 
residual

kR1k k= +

No

Yes

Meet the end 
conditions

End

Obtain the 
correlation vector g { }:k iJ i g th= ≥Input parameters:

V Φ max( )ii
th gα=

Obtain support Λ̂

k-1 _
ˆ

k k symmtryJ JΛ ∪ ∪

ˆ
kΛ

Fig. 5. Procedure of SwSOMP algorithm.
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Although the StOMP algorithm does not rely on the signal sparsity, but there is a
close relationship between the settings of selection threshold and observation matrix.
Threshold obtained in [17] is only for random Gaussian matrix, thus limits the
application of StOMP. On the other hand, the SwOMP algorithm has no strict
requirement for the observation matrix, and does not need to know the signal sparsity,
thus reduces the matching times, and improves the efficiency of the reconstruction. In
the corresponding MMV problem of MWC, compared to the SMV problem handled in
SwOMP, the one-dimensional sampling vector becomes two-dimensional sampling
matrix Y . The MWC reconstruction process with SwSOMP algorithm is shown in
Fig. 6.

The SwSOMP algorithm is a greedier approach for finding sparse solutions of
underdetermined system. It selects several new elements in each iteration. The algo-
rithm is described as Table 1. In Table 1, ej is the unit column vector of the jth element
that equals 1. The function of diag is to take the diagonal elements of the matrix.
Ksymmetry is the symmetric support bands. UK̂k

is the sub-matrix of observation matrix,

and Um	L corresponds to the support band K̂k .

( )x t

⊗

⊗

⊗

1( )x t

( )ix t

( )mx t

( )h t

( )h t

( )h t

st nT=

st nT=

st nT=

Measurement 
matrix C

m L×

. . .

. . .
. . .

Low pass filter

Reconstruct-
ion recovery 

algorithm
(SwSOMP)

( )ip t

( )mp t

1( )p t

1[ ]y n

[ ]iy n

[ ]my n

1[ ]z n

[ ]Lz n

(a) MWC sub-Nyquist sampling (b) CTF reconstruction

ˆ ˆsupp( ( ))x tΛ =

Fig. 6. MWC reconstruction process with SwSOMP.
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4 Simulation Results and Discussion

In our simulation, the correct support recovery of MWC refers to the criteria of the
successful recovery in [8, 13], i.e., when the estimated support set K̂ and real support
set K meets the condition K̂ � K and U#K̂ is a full-rank matrix with columns. In order
to validate the effectiveness of the proposed algorithm, signals with Sinc waveforms are

Table 1. The reconstruction algorithm of support with SwSOMP
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used to carry out simulations, and we compare the performances of SOMP and
SwSOMP algorithms on the support recovery under different number of bands, sam-
pling channel numbers, and SNRs.

The sparse wideband analog signal with noise is generated by

xðtÞ ¼
XN=2

i¼1

ffiffiffiffiffiffiffiffiffi
EiBi

p
sinc Bi t � sið Þð Þ cos 2pfi t � sið Þð Þþ nðtÞ ð9Þ

In (9), Ei, Bi, fi and si represent energy factor, bandwidth, carrier frequency and
time offset of the produced ith signal, respectively. N represents the number of the
symmetric bands. nðtÞ is Gaussian white noise. The following procedure is repeated
500 times to calculate the percentage of correct support recovery.

(1) Generate the mixing signal piðtÞ randomly;
(2) Generate the carrier frequency fi in the interval ½�fnyq=2; fnyq=2� randomly;
(3) Generate new Sinc signal according to fi;
(4) Using SOMP and SwSOMP respectively to estimate the support set and determine

whether it is correctly recovered.

4.1 Impact of the Weakness Parameters on the Support Recovery

In the simulations, the parameters of the signal are N ¼ 6 (3 pairs of symmetry),
Ei 2 f1; 2; 3g, Bi 2 f50; 50; 50g MHz, si 2 0:4; 0:7; 0:2f g ls, and carrier frequency fi
is randomly distributed in ½�fnyq=2; fnyq=2�, and fnyq ¼ 10 GHz. The MWC sampling
parameters are L0 ¼ 97, L ¼ 2L0 þ 1 ¼ 195, fs ¼ fp ¼ fnyq=L ¼ 51:28MHz, and
m ¼ f15; 20; 25; 30; 35g. The reconstruction parameter is a 2 ð0; 1�, and its initial
value is 0.1 with 0.1 as the increasing interval, and here Iters ¼ 10 because the iteration
times of SWOMP has nothing to do with the signal sparsity. The
SNR ¼ f10; 20; 30g dB. N is the band number of the signal, and m is the number of the
MWC channels.

When a varies from 0.1 to 1, the percentage of correct support recovery is shown in
Fig. 7 under the different number of channels m and different SNR. It can be seen from
Fig. 7, SwSOMP algorithm performs best for the support recovery when a ¼ 0:9 for
the effective channel number. Therefore, a is set to 0.9 in the following experiments.
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4.2 Impact of the Number of Sampling Channels on Support Recovery

The impact of the number of channels on the support recovery are investigated by using
SOMP and SwSOMP algorithm. Figure 8 shows the percentages of correct recovery
with SwSOMP and SOMP algorithms when the number of channels m is increased in
the interval ½15; 40�, and other parameters are the same as in Sect. 4.1. It can be seen
from Fig. 8 that the performance of the recovery is improved by 12.4% when m ¼ 22
with SwSOMP algorithm compared to that with SOMP algorithm. When m ¼ 25, the
percentage of correct recovery reaches 90% using SwSOMP algorithm, while the
percentage of correct recovery can reach 90% when m ¼ 30 using SOMP algorithm.
Therefore, the SwSOMP algorithm can achieve higher reconstruction rate with less
number of channels, which can save the hardware cost. Since the number of channels is
directly related with the total sampling rate fR (fR ¼ mfs), SwSOMP algorithm can also
reduce the system sampling rate by using less number of channels.
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4.3 Impact of SNR on the Support Recovery

Now we consider about the impact of SNR on the support recovery by using two
algorithms. The values of SNR are taken from the interval ½6; 20�, m ¼ 20; 25f g, other
parameters are the same as in Sect. 4.1. It can be seen from Fig. 9, when the number of
channels is 25, SwSOMP algorithm achieves better recovery than SOMP algorithm in
low SNR. When SNR = 6 dB and m ¼ 25, the correct reconstruction with SwSOMP
algorithm is improved 15% compared to that with SOMP algorithm. It can be seen that
the correct reconstruction rate with SwSOMP algorithms is better than SOMP algo-
rithm when the number of the channels is 20 and 25.
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4.4 The Relationship Between the Number of Bands and the Support
Recovery

The effects of number of frequency bands (i.e. signal sparsity) on the support recovery
are investigated by using the two algorithms. The number of symmetric bands are taken
from the interval 2; 16½ �. The relevant parameters setting are as follows, SNR ¼ 15,
m ¼ 20; 25f g, Ei 2 f1; 2; 3; 4; 5; 6; 7; 8g, si 2 0:4; 0:7; 0:2; 0:9; 1:2; 1:5; 1:8; 2:1f g ls,
and settings of other parameters are the same as in Sect. 4.1. It can be seen from the
Fig. 10, when N\8, the SwSOMP algorithm has a better performance. However,
when N ¼ 8, the performance has a sharp decline. It almost loses the ability of
recovery when N � 10. It is mainly due to the fact that the signal can no longer be
viewed as sparse signal under such circumstances. As a whole, SwSOMP algorithm
performs better than SOMP algorithm under the cases of different number of bands.

5 Conclusion

Aiming to improve the performance of sensing multiband sparse signal in practice, this
paper applies the SwSOMP algorithm to the CTF reconstruction block of MWC. The
SwSOMP algorithm first obtains the largest matched inner-product value with the
residual, which multiplies with the weakness parameter, and then obtains the atomic
selection threshold. One or more atoms may be selected in each iteration, as a result of
which the accuracy of matching the most relevant atoms is improved. Furthermore, the
algorithm can reconstruct the support set of the signal blindly without knowing the
signal sparsity in advance. By simulation experiments, we investigated the performance
of SwSOMP algorithm in MWC and the impacting parameters. Compared with SOMP
algorithm, SwSOMP algorithm has shown its advantages to be used in MWC for
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Fig. 10. The effects of number of signal bands on the support recovery.
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spectrum sensing on improving the percentage of correct recovery, reducing the
number of required sampling channels, and decreasing the total sampling rate of the
system.
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