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Abstract. The resource utilization (CPU, memory) is a key perfor-
mance metric in data center networks. The goal of the cloud platform
supported by data center networks is achieving high average resource uti-
lization while guaranteeing the quality of cloud services. Previous work
focus on increasing the time-average resource utilization and decreas-
ing the overload ratio of servers by designing various efficient virtual
machine placement schemes. Unfortunately, most of virtual machine
placement schemes did not involve the service level agreements and sta-
tistical methods. In this paper, we propose a correlation-aware virtual
machine placement scheme that effectively places virtual machines on
physical machines. First, we employ Neural Networks model to forecast
the resource utilization trend according to the historical resource utiliza-
tion data. Second, we design correlation-aware placement algorithms to
enhance resource utilization while meeting the user-defined service level
agreements. The results show that the efficiency of our virtual machine
placement algorithms outperform the previous work by about 15%.
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1 Introduction

As the rapid development of cloud technology, data center networks (DCNs),
the essential backbone infrastructure of cloud services such as cloud computing,
cloud storage, and cloud platforms, attract increasing attentions in both acad-
emia and industry. Cloud data centers attempts to offer an integrated platform
with a pay-as-you-go business model to benefit tenants at the same time, which
is gradually adopted by the mainstream IT companies, such as Amazon EC2,
Google Cloud Platform and Microsoft Azure. The multi-tenant and on-demand
cloud service platform is achieved through virtualization on all shared resources
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and utilities, such as CPU, memory, I/O and bandwidth, in which various ten-
ants buy virtual machines (VMs) within a certain period of time to run their
applications [2]. Owing to multi-tenant demands, all kinds of workloads phys-
ically coexist but are logically isolated in DCNs, including data-intensive and
latency-sensitive services, search engines, business processing, social-media net-
working, and big-data analytics. Elastic and dynamic resource provisioning is
the basis of DCN performance, which is achieved by virtualization technique
to reduce the cost of leased resources and to maximize resource utilization in
cloud platforms. Therefore, the effectiveness of virtualization becomes essential
to DCN performance.

Originally, the design goal of a DCN is to meet the peak workloads of ten-
ants. However, at most time, DCNs are suffering from high energy cost due to
low server utilization. A lot of servers are running with low workloads while con-
suming almost the same amount of energy as servers with high workloads. The
cloud service providers have to spend more money on cooling bills to keep the
servers in normal running. They aim to allocate resources in an energy-effective
way while guaranteeing the Service Level Agreements (SLAs) for tenants.

A lot of literatures focus on enhancing the average utilization without vio-
lating SLAs. Some researchers focus on fair allocation schemes. Bobroff et al. [3]
proposed a dynamic VM placement system for managing service level agreement
(SLA) violations, which forecasts the future demand and models the prediction
error. However, their approach only deals with single VM prediction, does not
take correlation into consideration. Meng et al. [12] argued that VM should not
be done on VM-by-VM basis and advocated joint-VM-provisioning, which can
achieve 45% improvements in terms of overall utilization.

In this paper, we propose a correlation-aware virtual machine placement
scheme that effectively places virtual machines on physical machines. First, we
employ Neural Networks model to forecast the resource utilization trend accord-
ing to the historical resource utilization data. Second, we design correlation-
aware placement algorithms to enhance resource utilization while meeting the
user-defined service level agreements. The simulation results show that the effi-
ciency of our virtual machine placement scheme outperforms the previous work
by about 15%.

The rest of the paper is organized as follows. Section 2 introduces the related
work about resource demand prediction and virtual machine placement. Section 3
proposes the correlation-aware virtual machine placement system. Section 4 con-
cludes this paper.

2 Related Work

2.1 Resource Demand Prediction

By appropriate prediction schemes, it is probable to mitigate hot spots in DCNs.
Demand prediction methods will provide us early warnings of hot spots. Hence,
we can adopt measures to ease the congestions in DCNs and allocate resource in



24 T. Chen et al.

a way that guarantee the performance of applications for tenants. The demand
prediction methods usually fall into time series and stochastic process analyses.

The ARIMA model is often used to predict time series data. [3] forecasts
the future demand and models the prediction error. However, their approach
only deals with single VM prediction, does not take correlations between VMs
into consideration. [11] accurately predicts the future VM workloads by seasonal
ARIMA models. [13] employs SARMA model on Google Cluster workload data
to predict future demand consumption. [14] uses a variant of the exponentially
weighted moving average (EWMA) load predictor. For workloads with repeat-
ing patterns, PRESS derives a signature for the pattern of historic resource
utilization, and uses that signature in its prediction. PRESS uses a discrete-time
Markov chain with a finite number of states to build a short-term prediction
of future metric values for workloads without repeating pattern, such as CPU
utilization or memory utilization [7]. In [8], Markov chain model is applied to
capture the temporal correlation of VM resource demands approximately.

2.2 Virtual Machine Placement

Virtual Machine Placement (VMP) is a problem involving mapping virtual
machines (VMs) to physical machines (PMs). A proper mapping scheme can
result in less PMs required and less energy cost. A poor resource allocation
scheme may require more PMs and may induce more service level agreement
(SLA) violations. Bobroff et al. [3] proposed a dynamic VM placement system
for managing service level agreement (SLA) violations. They presented a method
to identify servers which benefit most from dynamic migration. Meng et al. [12]
argues that VM sizing should not be done on VM-by-VM basis and advocates
joint-VM-provisioning which can achieve 45% improvements in terms of overall
utilization. They first introduced a SLA model that map application perfor-
mance requirements to resource demand requirement. Kim et al. [9] proposed
a novel correlation-aware virtual machine allocation for energy-efficient data-
centers. Specifically, they take correlation information of core utilization among
virtual machines to consideration. Wang et al. [15] attempt to explore particle
swarm optimization (PSO) to minimizing the energy consumption. They design
an optimal VMP scheme with the lowest energy consumption. In [10], authors
propose a VMP scheme which minimizes the energy consumption of the data
center by consolidating VMs in a minimum number of PMs while respecting the
latency requirement of VMs.

3 Correlation-Aware Virtual Machine Placement

3.1 System Architecture

We propose a correlation-aware virtual machine placement system for data cen-
ter networks (DCNs) that predicts the future resource demand (utilization) of
requests and minimize the number of physical machines (PMs) to meet the
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demand while considering the correlations between virtual machines (VMs) and
satisfying a user-defined server level agreement (SLA) at the same time.

The system architecture is shown in Fig. 1, which includes three key com-
ponents: monitor, predictor and controller. Tenants submit resource requests to
the cloud platform. The cloud platform allocates the resources (VMs) for the
requests. VMs are usually hosted on PMs in DCNs. Monitor module records
the historical utilization data of VMs and transmit it to Predictor module. The
predicted data generated from Predictor is delivered to Controller modular that
makes a strategic decision for VM placement problem. An new VM placement
strategy happens periodically every 100 time slots (a resource demand data
recorded at a time slot).

Fig. 1. Placement system architecture.

Traditionally, a VM placement scheme considers one VM at a time. In [12],
the authors argued that the anti-correlation between VMs can be utilized. Their
approach only picks two VMs at a time and allocate as less resource as possible
for VMs. However, it is possible that three VMs that negatively correlate with
each other, as shown in Fig. 2. Hence, we can do joint-provisioning of any number
of VMs without SLA violations. The overall capacity allocated for VM 1, VM 2
and VM 3 under joint-provisioning is about 70% of a PM while the traditional
VM placement needs to allocate about 85% capacity for these three VMs.

3.2 Prediction

In [16], the authors applied ARIMA and GARCH model to forecast the trend
and volatility of the future demand. ARIMA performs well when an initial dif-
ferencing step can be applied to remove non-stationarity. However, ARIMA is a
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Fig. 2. VM correlation.

linear time series model and may not work otherwise. Neural Networks can be
applied to predicted both linear and non-linear time series. For example, nonlin-
ear autoregressive neural network (NARNET) can be trained to predict a time
series from historical demand data.

Let NARNET(ni, nh) denotes a nonlinear autoregressive neural network with
ni inputs and nh outputs. Such a model can be described as

Ui(t) = F (Ui(t − 1), Ui(t − 2), . . .) + ε (1)

where Ut is the variable of interest, and ε is the error term. We can the use this
model to predict the value of Ut+k.

The performance of NARNET(10, 20) is shown in Fig. 3. The simulation
results shows that NARNET can predict future resource demand accurately.

3.3 Virtual Machine Placement Algorithms

In this subsection, we present correlation-aware virtual machine placement algo-
rithms. The allocated resource for VMs should match the future resource demand
to achieve high resource utilization of PMs while meeting user-defined SLAs.
Table 1 summarizes the main symbols used in this paper.

We use two performance metrics, overload ratio o and average resource
demand D, to evaluate the effectiveness of our proposed VM placement algo-
rithms. The former is the ratio of the number of time slots when the actual
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Fig. 3. Performance of NARNET.

Table 1. Main symbols and descriptions

Symbol Description

V = {v1, · · · , vn} Set of VMs

S = {s1, · · · , sm} Set of PMs

NPM Number of used PMs for placement

Dm Sum of resource demands in PM m

C Capacity of a PM

o Overload ratio

D Average resource demand (utilization)

ε User-defined SLA

resource demand of a PM is higher than its capacity over all the time slots ×
NPM . The latter is the average resource utilization of PMs over all the time
slots. The objective of algorithms is to achieve low overload ratio o and high
average resource utilization D. We monitor resource demand (e.g., CPU, mem-
ory) of each VM and predict conditional mean μ and the conditional variance σ.
We also calculate the correlations ρ between different VMs placed on the same
PMs according to resource demand time series data.

We can formulate the correlation-aware VM placement problem as follows.

min NPM (2)
s.t. Pr(Dm > C) < ε, ∀m, (3)

∑

m

xmn = 1, ∀n, (4)

xmn ∈ {0, 1}, ∀m, ∀n. (5)
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The binary variable xmn indicates VM n is hosted on PM m or not. Dm

denotes the resource demand of VMs on PM m. C means the capacity of a PM.
ε > 0 is a small constant, called user-defined SLA.

Equation (3) can be transformed to:

C � E[Dm] + cε(0, 1)
√

var[Dm]

E[Dm] = μ1xm1 + μ2xm2 + . . . + μnxmn,

var[Dm] =
∑

i,j

ρijσiσjxmixmj .

where cε(0, 1) is the (1−ε)-percentile of standard normal distribution with mean
0 and variance 1. For example, when ε = 2%, cε(0, 1) = 2.06. E[Dm] is the
sum of expectations of resource demands of all VMs placed on PM m, and
var[Dm] is the variance of the workload with correlations between VMs taken
into consideration.

After problem formulation, we will present our algorithms to the VM place-
ment problem. The first algorithm is Correlation-Aware First-Fit algorithm.
The algorithm is similar to first-fit algorithm in solving the bin-packing prob-
lem, which is shown in Algorithm 1.

Algorithm 1. Correlation-aware First-Fit VM Placement Algorithm
Input: Historical resource demand data of VMs from the monitor.
Output: A VM placement scheme with a user-defined SLA.

1 foreach VM n do
2 foreach PM m do
3 Add VM n to PM m;
4 xmn = 1;

5 if E[Dm] + cε(0, 1)
√

var[Dm] < C then
6 break;
7 else
8 Remove VM n from PM m;
9 xmn = 0;

10 end

11 end

12 end

Algorithm 1 is a first-fit algorithm which will place a certain VM into the first
PM that can hold it with a certain probability less than a user-defined SLA. Since
this problem is very similar to first-fit algorithm of bin packing problem, we can
easily reach the inequality the number of PMs used by first-fit described above
is no more than 2× optimal number of PMs. If we first sort the VMs by the size,
then this is very similar to first fit decreasing algorithm in bin packing problem.
It has been shown to use no more than 11

9 OPT + 1 bins (where OPT is the
number of bins given by the optimal solution).

The second algorithm is Correlation-Aware Best-Fit algorithm, as shown in
Algorithm 2. The main idea is: each packing is determined in a search procedure
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Algorithm 2. Correlation-Aware Best-Fit VM Placement Algorithm
Input: Historical resource demand data of VMs from the monitor.
Output: A VM placement scheme with a user-defined SLA.

1 foreach VM n do
2 Try to place VM n on every PM, and finally chose the PM m with the least slack to

place;
3 xmn = 1;

4 if E[Dm] + cε(0, 1)
√

var[Dm] < C then
5 break;
6 else
7 Remove VM n from PM m;
8 xmn = 0;

9 end

10 end

that tests all possible subsets of items on the list which fit the bin capacity. We
will choose the subset with the least slack to fill the bin. If the algorithm finds a
subset that fills the bin completely, the search is stopped, for there is no better
packing possible.

We compare our VM placement algorithms with the following benchmark
algorithms:

Random. It is based on the idea of randomly place VMs to PMs according the
peak value in historical resource demand data without making any predictions
and considering correlations between VMs.

Constant variance (CV). This algorithm predicts the future demand of VMs
while not taking correlations between VMs into consideration [16].

3.4 Evaluation

The resource demand (utilization) data is generated by the method in [1]. We
put 384 VMs on 128 PMs. We first generate 200 resource demand traces with
different mean and variation. Each trace contains a list of 400 historical resource
demand data (400 time slots). We will use the first 100 data to train the neural
network model and the remaining data to compare our correlation-aware place-
ment algorithms with previous proposed algorithms. We normalize the capacity
of a PM as 100%.

As shown in Table 2 and Fig. 4, when the user-defined SLA becomes larger,
there are more PMs that achieve average resource utilization. There is a trade-
off between resource utilization and SLA guarantee, and we should think twice
before we make the decision under different scenarios.

As shown in Fig. 5, the resource utilizations of PMs are different under the
four algorithms with user-defined SLA 5%. The random algorithm randomly
place VMs to PMs according to the peak value in the historical data. Hence,
the average resource utilization of PMs is the lowest among the four algorithm
and the number of used PMs are the largest. The constant variance algorithm
assumes the variance of VM i is constant which is apparently not the case in
the real world. Correlation-aware first-fit and best-fit algorithms outperforms
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Table 2. Number of used PMs, the overload ratio (o), and average resource utilization
of PMs (D) in different time slots under different user-defined SLAs.

Time Slots 100–200 Time Slots 200–300 Time Slots 300–400

ε = 2% NPM o D NPM o D NPM o D

FF 95 0.76% 66.87% 96 0.69% 66.17% 96 0.69% 66.15%

BF 95 0.72% 66.87% 96 0.63% 66.17% 96 0.71% 66.15%

CV 128 0.007% 49.63% 128 0% 49.63% 128 0% 49.61%

ε = 5% NPM o D NPM o D NPM o D

FF 90 2.22% 70.58% 91 1.74% 69.81% 92 1.73% 69.03%

BF 90 2.27% 70.58% 91 1.84% 69.81% 92 1.72% 69.03%

CV 96 2.4% 66.17% 96 2.74% 66.17% 96 2.95% 66.15%

ε = 10% NPM o D NPM o D NPM o D

FF 85 6.36% 74.74% 87 4.9% 73.02% 86 5.32% 73.84%

BF 85 6.63% 74.74% 87 4.9% 73.02% 86 5.32% 73.84%

CV 96 2.65% 66.17% 96 2.65% 66.17% 96 2.95% 66.15%

Random 128 6.02% 52.5% 128 5.74% 52.37% 128 5.94% 52.48%

Fig. 4. Correlative-aware algorithms with different user-defined SLAs.

Fig. 5. Resource utilization with user-defined SLA 5%.
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the other two algorithms. There are more PMs with high resource utilization
and reduces the total number of used PMs. Tough the resource utilizations of
PMs are almost the same, the best-fit algorithm costs more than the first-fit
algorithm due to the test of placing a VM on every PM.

4 Conclusion

In this paper, we proposed a correlation-aware virtual machine placement system
that effectively places virtual machines on physical machines. First, we employ
Neural Networks model to predict the resource utilization trend according to the
historical resource utilization data. Second, we presented two correlation-aware
placement algorithms to enhance resource utilization while meeting the user-
defined service level agreements. The simulation results show that the efficiency
of our virtual machine placement scheme outperforms the previous work by
about 15%.
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